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FOREWORD 

To understand speech and voice production and perception, scientists have 

traditionally studied the acoustic signal captured by a microphone. In the health sciences, the 

human voice has been studied as a way of revealing information about the health of an 

individual. While there has been considerable progress in the analysis of speech and voice 

signals for the diagnosis and documentation of vocal disorders, some concern has been 

expressed regarding the need to reach a consensus on the utility, feasibility, and 

standardization of voice perturbation analysis methods. 

The workshop proceedings are intended to be a step toward this process. A Workshop 

on Acoustic Voice Analysis was held on the 17th and 18th of February, 1994, in Denver, 

Colorado. The site was the Wilbur James Gould Voice Research Center (then known as The 

Recording and Research Center), a division of The Denver Center for the Performing Arts 

(DCPA). Sponsorship and financial support was provided by the National Center for Voice 

and Speech (NCVS), and the DCPA. The NCVS is a research and training center funded by the 

National Institute on Deafness and Other Communication Disorders. 

The Proceedings consist of written versions of topics discussed during the workshop. 

Some of the papers may be found in other journals. As a rule, previously published material 

was accepted, since the workshop was seen as a summary as much as a venue for new ideas. 

Attendance and contributions were by invitation, so that a broad spectrum of the voice 

analysis community could be represented. While the audience and list of papers does not 

exhaustively represent the community, we were able to present perspectives from industry 

representatives, speech clinicians, speech science academicians, and medical personnel. 

The topics presented include recording techniques, file formats, perturbation statistics 

extraction algorithms, nomenclature and classification, and the nature of perturbation. As a 

result, the papers ranged in style from technical summaries and algorithm descriptions to 

perspectives and commentaries. 

As part of this Foreword, mention should be made regarding the organization of the 

manuscript. Each paper is identified using the first few letters of the primary author's name. 

The first paper, HESS, by Dr. Wolfgang Hess is the keynote address for the Workshop. He was 

given the task of introducing the concepts involved in pitch determination - generally considered 

the heart of perturbation analysis. Because perturbations are viewed as deviations from the 

steady state, the demarcation of fundamental periods is crucial. The next four papers 

(identified as TALK, MIL1, DEL, and QI), discuss the topics of pitch (or FO) marking, pitch 

perturbation, and amplitude perturbation. Following that are three papers (RAB, GER, and 



LEM), which discuss the utility of. perturbation measures and the-statistical methodology for 

defining the 'normal limits' of speech characteristics. 

The paper EPN discusses a method of pitch marking, jitter measurement, and their 

results as applied to aged voices. In JIA and HUA, protocols and observations are made 

regarding the capturing of voice samples in the context of reducing subject frequency and 

intensity variability. In KHE, a discussion and demonstration of new methods in spectral 

estimation are presented, while WON, presents a qualitative discussion on the sources of 

perturbation from a biomechanical perspective. The latter paper was not presented during the 

workshop, but it has been submitted by the editor as a relevant topic. The short summary in 

MILD makes suggestions on hardware selection in the context of different types of voice 

processing. MIL2 and CUR discuss file formats, while WINH discusses microphone selection 

and placement as it affects perturbation measurements. 

Finally,l>r. Ingo Titze has written a summary statement (TTTZE), the first part of which 

may be considered as his personal perspective on the analysis, nomenclature and classification 

of voice data. The second part of the statement is a set of recommendations and a glossary of 

terminology. Only the recommendations should be viewed as majority opinion. The summary 

statement can be obtained as a separate document from the NCVS. 

The proceedings have focused on a very narrow set of issues which are important to the 

voice analysis community. We hope that the results are informative, and that our efforts will at 

least generate discussion, if not a consensus, in the community. 

Darrell Wong, 

June, 1995. 
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Pitch Determination of Speech Signals - with Special 

Emphasis on Time-Domain Methods 

Wolfgang J. Hess 

Institute for Communications Research and Phonetics (IKP), University of Bonn 

Poppelsdorfer Allee 47, D—53115 Bonn, Germany 

wgh@uni-bonn.de 

Abstract. This paper presents a survey of methods for pitch determination of speech signals 

with special emphasis on time-domain methods. As speech is a time-variant signal the re 

sult of the measurement will depend on the method applied. This implies that we first de 

fine what is subsumed under the term pitch. From the point of view of speech production 

this is rate of vocal fold vibration or the duration of individual laryngeal excursion cycles which 

is measured in the time domain by algorithms that are able to track the signal period by 

period. From a more signal-oriented point of view where the emphasis is laid on periodicity 

of voiced speech signals, this will be fundamental period (duration), or, if the measurement 

is carried out in the frequency domain, fundamental frequency. Pitch determination algo 

rithms (PDAs) which follow this definition usually operate on the basis of some short-time, 

i.e., frame-to-frame representation. After a short review of these PDAs a survey of time-

domain algorithms is presented. These include methods such as structural analysis of the 

speech signal with or without preprocessing, determination of individual periods from the 

first partial of the signal, determination of the point of glottal closure, and multi-channel 

approaches. Some remarks on glottal inverse filtering are added. The paper then discusses 

the issue of error analysis. Errors in pitch determination are classified into gross errors and 

measurement inaccuracies, and it is a main problem for any algorithm, when it detects an 

estimate that seems to be wrong, to detect reliably whether this is due to a measurement 

failure or to a momentary irregularity of the signal. The paper also addresses the possibility 

to use an instrument that directly measures the laryngeal excitation, notably a laryngo-

graph, for gaining reference contours from which the PDAs can be evaluated or trained. 

Pitch, i.e., fundamental frequency (or rate of vocal-fold vibration) F$ as well as fundamental 

period Tq takes on a key position in the acoustic speech signal. The prosodic information 

of an utterance is predominantly determined by this parameter. The ear is by an order of 

magnitude more sensitive to changes of fundamental frequency than to changes of other 

speech signal parameters (Flanagan and Saslow, 1958, Klatt, 1973; Harris and Umeda, 

1987). The quality of vocoder speech as well as of synthetic speech (when natural-speech 

units are used) is essentially influenced by the quality and faultlessness of the pitch mea 

surement (Gold, 1977). Hence the importance of this parameter claims for good and reli 

able measurement methods. 

Besides voicing determination, pitch determination is one of the two subproblems of 

voice source analysis. In voiced speech, the vocal cords vibrate in a quasi-periodic way. 
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Speech segments with voiceless excitation are generated by turbulent air flow at a constric 

tion or by the release of a closure in the vocal tract. The parameters we have to determine 

in voice source analysis are the manner of excitation, i.e., the presence of a voiced excitation 

and the presence of a voiceless excitation, a problem which is referred to as voicing deter 

mination, and - for the segments of the speech signal where a voiced excitation is present 

— pitch determination. 

Automatic pitch determination has a rather long history which goes back even beyond 

the times of vocoding (e.g. Griitzmacher and Lottermoser, 1937). The most important de 

velopments leading to today's state of the art were made in the-sixties^and-seventies; these 

methods that are reviewed in this paper are extensively discussed in (Hess, 1983). Since 

then, few absolutely new principles have been invented; a number of methods, however, 

were improved and refined, whereas other solutions were revived that required an amount 

of computational effort appearing unrealistic at the time the algorithm was first developed. 

On the other hand, new techniques such als neural networks or - even more recently -

the wavelet transform initiated new developments especially in time-domain pitch deter 

mination where further improvements are to be expected in the near future. With speech 

Fig. 1. Example of a speech signal (after pitch determination). Beginning of the utterance "Algo 

rithms and devices for pitch determination". Speaker: male; undistorted signal. Scale: 250 ms 

per line. The analysis was done using the algorithm by Hess (1979). ( ) Voiceless, 

( ) Pause, (| 11 11 |) pitch period boundaries ("markers"). Markers indicated by short lines 
were found irregular 
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corpora coming into use that contain many labeled and processed speech data, researchers 

nowadays tend toward thoroughly examining and checking the performance of their algo 

rithms. 

At the first glance the task looks simple: one has just to detect the fundamental frequen 

cy of a quasi-periodic signal. Dealing with speech signals, however, the assumption of qua-

si-periodicity is often far from reality. Figure 1 shows an arbitrary (but typical) example of 

a speech signal. For a number of reasons, the task of pitch determination must be counted 

among the most difficult problems in speech analysis. 

1) In principle, speech is a nonstationary process; the momentary position of the vocal 

tract may change abruptly at any time. This leads to drastic variations in the temporal 

structure of the signal, even between subsequent pitch periods. 

2) Due to the flexibility of articulatory gestures and the wide variety of voices, there exist 

a multitude of possible temporal structures. Narrow-band formants at low harmonics (es 

pecially at the second or third harmonic) are a particular source of trouble. 

3) For an arbitrary speech signal uttered by an unknown speaker, the fundamental fre 

quency can vary over a range of almost four octaves (50 to 800 Hz). Especially for female 

voices, Fq thus often coincides with the first formant (the latter ranging from about 200 Hz 

to 1400 Hz). This causes problems when inverse filtering techniques are applied. 

4) The excitation signal itself is not always regular (see Fig. 2). Even under normal 

conditions, i.e., when the voice is neither hoarse nor pathologic, the glottal waveform ex 

hibits occasional irregularities (Dolansky and Tjernlund, 1968; Fujimura, 1968; Lieber-

20 ms 

I Time 

Modal Register 

Fig. 2. Speech signals in different phonation: vocal fry (upper line); modal register, i.e., normal 

speech (lower line, with pitch period delimiters). Signal: sustained vowel [e], speaker WGH 

(male) 
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man, 1963). In addition, the voice may temporarily fall into vocal fry or laryngealization 
(Hollien, 1974) which is a nonpathologic mode of voice excitation with rather large and 
irregular intervals between subsequent glottal pulses . Such laryngealizations are deliber 
ately used by many speakers as boundary signals or substitutions for glottal stops (Huber, 
1988) and may therefore occur anywhere in fluent speech. 

5) Additional problems arise in speech communication systems where the signal is often 
distorted or band limited (for instance, in the telephone channel). This may be detrimental 
for some applications. For voice quality measurement or vocal jitter determination, for 
instance, even the inevitable phase distortions introduced by an ordinary analog tape or 
cassette recorder (cf. Fig. 3) may be intolerable. 

Literally hundreds of methods for pitch determination have been developed. This paper 
will give a survey of the prevailing principles and discuss selected methods in more detail. 
First, we will deal with possible definitions of the parameter/?*7c/i itself (Sect. 1), followed 
by a gross categorization of the various principles of its determination (Sect. 2). After that 
we will go into a more detailed discussion of individual principles and individual solutions. 
Section 3 will present a brief survey of short-term analysis methods, and then Sect. 4 will 
deal more extensively with time-domain methods. Sections 5 and 6 will finally discuss 
problems of error analysis and evaluation, accurate voicing and pitch determination using 
instruments such as the laryngograph, and various applications. 

As to the realization, we will not distinguish between a hardware device (whether ana 
log or digital) and an algorithmic solution: they are all regarded aspitch determination algo 
rithms (PDAs). In addition we will separate the problems of pitch determination and voic 
ing determination although the two are often realized within the same algorithm; we will 
assume in the following that a voiced/unvoiced decision has been done already, and that 
there are only voiced signals to be processed by the respective PDA. 

Fo = 75 Hz Fo = 150 Hz Fo = 400 Hz 

LT Jlllll 

Fig. 3a-c. Phase distortions in analog tape recordings, (a) Rectangular waveform; (b) same wa 
veform after recording on a high-quality analog tape recorder; (c) same waveform after rere-
cording it with the same recorder in backward direction 
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1. Basic Definitions of Pitch 

Pitch can be measured in many ways. If the signal is completely stationary and periodic all 
these strategies - provided they operate correctly - lead to identical results. Since the 
speech signal is nonstationary and time variant, however, aspects of strategy such as the 
starting point of the measurement, the length of the measuring interval, the way of averag 
ing (if any), or the operating domain (time, frequency, lag etc.) of an individual algorithm 
start influencing the results and may lead to estimates that differ from algorithm to algo 
rithm even if all these results are "correct" and "accurate." Before entering a discussion on 
individual methods, we must therefore have a look at the parameter pitch and provide a 
clear definition of what should be measured and what is actually measured. 

A word on terminology first. There are three points of view for looking at a speech pro 

cessing problem (Zwicker et al, 1967): the production, the signal-processing, and the per 
ception point of views, respectively. In the actual case of pitch determination the produc 

tion point of view is obviously oriented toward the generation of the excitation signal in the 
larynx; we will thus have to start from a time-domain representation of the waveform as a 
train of laryngeal pulses. If an algorithm or device works in a speech production oriented 

way, it measures individual laryngeal excitation cycles or, if some averaging is performed, it 
determines the rate of vocal-fold vibration. The signal-processing point of view can be char 
acterized in such a way that (quasi-)periodicity is observed in the signal, wherever that sig 

nal comes from, and that the task is just to extract those features that best represent this 
periodicity. The pertinent terms are fundamental frequency or fundamental period. If indi 
vidual cycles are determined, we may (somewhat inconsistently) speak of pitch periods or 
simply of periods. The perception point of view leads to a frequency-domain representa 
tion since pitch sensation corresponds to a frequency and not to an average period or a 
sequence of periods (Goldstein, 1973; Terhardt, 1979; Plomp, 1976). This point of view is 

associated with the original meaning of the term pitch. However, the term pitch has consis 

tently been used as some kind of "common denominator", i.e., as a general name for all 
those terms mentioned before, at least in the technical literature (Kohler, 1982). In addi 
tion, psychoacousticians have started to create new terms for describing the aspects of 
pitch perception, such as spectral pitch or virtual pitch (Terhardt, 1979), mostly because they 
felt it necessary to specify partial aspects of the complex phenomenon of pitch perception 

more precisely, but also in order to avoid confusions. In the following, we will therefore use 

the termpitch in this wider sense wherever a more restricted description is undesirable or 
impossible, and take the more precise terms otherwise. 

Defining the-different fepresentatiefts of pitch, 4t-appears reasonable to proceed from 
production to perception. Going in that direction we will start at a local and detailed repre 

sentation and arrive at a more global representation in the case of the perception-oriented 

view. The basic definitions could thus read as follows (Hess, 1983:475,1992; Hess and In-
defrey, 1987): 

7o is defined as the elapsed time between two successive laryngeal pulses. Measure 

ment starts at a well specified point within the glottal cycle, preferably at the point of 
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glottal closure or - if the glottis does not close completely - at the point where the 
glottal area reaches its minimum. m \ 

PDAs that obey this definition will be able to locate the point of glottal closure and to de 
limit individual laryngeal excitation cycles. This task, which usually forms part of a glottal 
inverse filter, goes far beyond the scope of ordinary pitch determination; if the speech sig 
nal alone is available for the analysis, reliable results are to be expected only for selected 
algorithms and only if the signal is totally undistorted. With the aid of an instrument this 
problem can be solved in a more general way. 

7o is defined as the elapsed time between two successive laryngeal pulses. Measure 
ment starts at an arbitrary point within the glottal cycle. Which point that is depends 

on the individual method, but for a given PDA this point is always located at the same 
position within the glottal cycle. n\ 

Ordinary time-domain PDAs follow this definition. The reference point can be a signifi 
cant extreme, a certain zero crossing, an excursion cycle, and so on. This is not necessarily 

the point of glottal closure itself. Usually, however, it is possible to derive the point of glot 

tal closure from this reference point when the signal is undistorted. Yet the presence of 
phase distortions can even destroy this possibility. PDAs that follow this definition usually 
track the signal period by period in a synchronous way, and a commonly used term (al 

though somewhat inconsistent with the definition of the termpitch as given above) for what 
is measured here is individual pitch periods. 

To is defined as the elapsed time between two successive laryngeal cycles. Measure 

ment starts at an arbitrary instant which is fixed according to external conditions, and 

ends when a complete cycle has elapsed. n>) 

This is an incremental definition of To. To is still defined as the length of an individual peri 

od, but no longer from the speech production point of view, since the definition has noth 
ing to do with an individual excitation cycle. The synchronous way of processing is main 
tained, but the phase relations between the laryngeal waveform and the markers, i.e., the 
pitch period delimiters at the output of the algorithm are lost. Once a reference point in 
time has been established, it will be kept only as long as the measurement is correct and as 

long as voicing continues. If there is a measurement error, or if voicing ceases, the location 
of the reference point is lost, and the next reference point may be completely different with 
respect to its position within the excitation cycle. 

To is defined as the average length of several periods, i.e., as the average elapsed time 

between a small number of successive laryngeal cycles. In which way the averaging is 
performed, and how many periods are involved, is a matter of the individual algo 
rithm. (4a) 

This is the standard definition of To for any PDA that applies stationary short-term analy 

sis, including the implementations of frequency-domain PDAs. Well-known methods, such 

as cepstrum (Noll, 1967) or autocorrelation (Rabiner, 1977) follow this definition. The 
corresponding frequency-domain definition reads as follows. 

Fo is defined as the fundamental frequency of an (approximately) harmonic pattern in 
the (short-term) spectral representation of the signal. It depends on the particular 
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method whether Fo is calculated as the frequency of a certain harmonic divided by the 
respective harmonic number m (including m=l), as the frequency difference between 
adjacent spectral peaks, or as the greatest common divisor of the frequencies of the 
individual harmonics. /,^ 

The perception point of view of the problem leads to a different definition of pitch. 
Pitch perception happens in the frequency domain. According to the existing theories 
(Plomp, 1976), 

FQ is defined as the frequency of the sinusoid that evokes the same perceived pitch (res 

idue pitch, virtual pitch, etc.) as the complex sound which represents the input speech 
signal. (5) 

This definition is principally different from the previous ones. Above all, it is a long-term 
definition (Terhardt et al, 1982). The pitch perception theories were developed for sta 
tionary complex sounds and were only extended toward short pulse trains with varying am 
plitude patterns and constant frequencies, but not toward signals with varying fundamental 
frequency. Except for some investigations which indicate that the difference limen for Fo 
changes goes up by at least an order of magnitude when time-variant stimuli are involved 
(Harris and Umeda, 1987; 't Hart, 1981), the question of the behavior of the human ear 
with respect to short-term pitch perception is only partially answered, and our knowledge 

about what kind of short-term "analysis" is executed in the human ear and how it is 

executed is still incomplete. Hence even such PDAs that claim to be perception-oriented 
(e.g., Duifhuis et al., 1982, Hermes, 1988) enter the frequency domain in a similar way as 
in definition (4b), i.e., by a standard short-term transformation such as the discrete Fourier 
transform (DFT) with previous windowing of the signal. 

Since the results of individual algorithms may be different according to the definition 
they follow, and since the definitions (1) through (5) are partly given in the time (or lag) 
domain, partly in the frequency domain, it is necessary to reestablish the relation between 
the time- and frequency-domain representations of pitch, 

Fo = 1 I To > (6) 

in such a way that when a measurement is carried out in one of the domains, however To 

or Fo are defined there, the representation in the other domain will always be established 
by this equation. 

2. Categorizing the Various Principles 

We subdivide a PDA into three steps of processing: a) the preprocessor, b) the basic extrac 
tor, and c) the postprocessor (McKinney, 1965; Hess, 1983:152). The basic extractor per 

forms the main task: it converts the input signal into a series of pitch estimates. The task 
of the preprocessor is data reduction and enhancement in order to facilitate the operation 

of the basic extractor. The postprocessor operates in a more application-oriented way. 
Some of its typical tasks are error correction, smoothing the pitch contour, or graphic dis 
play. 

The existing PDA principles can be split up into two gross categories when the input 
signal of the basic extractor is taken as a criterion. If this signal has the same time base as 
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the original speech signal, the PDA operates in the time domain. It will thus measure To 
according to one of the definitions (1) through (3). In all other cases, somewhere in the 

preprocessor the time domain is left. Since the speech signal is time variant, this cannot be 

done other than by a short-term transformation; in this case we will usually determine To 
otF0 according to definitions (4a,b) or (5); in some rare cases (for instance, AMDF) defi 

nition (3) may apply as well. Accordingly, we have the two PDA categories: a) time-domain 
PDAs, and b) short-term analysis PDAs. 

3. A Brief Look at Short-Term Analysis PDAs 

3.1 Principle of Short-Term Analysis and a Categorization of PDAs 

In any short-term analysis PDA a short-term (or short-time) transformation is performed in 
the preprocessor step. The speech signal is split up into a series of frames; an individual 
frame is obtained by taking a limited number of consecutive samples of the signal x{n) from 
the starting point, n=q-K+l, to the ending point, n=q. The frame length, K, is chosen 

short enough so that the parameter(s) to be measured can be assumed approximately 

constant within the frame. On the other hand, K must be large enough to guarantee that 

the parameter remains measurable. For most short-term analysis PDAs a frame thus re 

quires two or three complete periods at least. In extreme cases, when Fo changes abruptly, 

or when the signal is irregular, the contradiction of these two conditions can be a source of 

error (Fujisaki et al., 1986). The frame interval Q, i.e., the distance between consecutive 

frames (or its reciprocal, the frame rate), is determined in such a way that any significant 
parameter change is documented in the measurements. 

The short-term transformation, so to speak, is intended to behave like a concave mirror 
which focuses all the scattered information on pitch, as far as it is available within the 
frame, into one single peak in the spectral domain. This peak is then determined by a peak 

detector (as the usual implementation of the basic extractor in this type of PDAs). Hence 
the output signal of the basic extractor is a sequence of average pitch estimates. The short-

term transform causes the phase relations between the spectral domain and the original 

signal to be lost. At the same time, however, the algorithm loses much of its sensitivity to 

phase distortions and signal degradation. Unfortunately the increased reliability of the al 
gorithm is accompanied by an increased computing effort (which is at least one order of 

magnitude higher than for a time-domain PDA). Much of this effort goes into the numeric 
calculation of the transform. Besides the search for reliability, the search for a fast imple 

mentation has therefore been an important issue in the design of short-term analysis 
PDAs. 

Not all the known spectral transforms show the desired focusing effect. Those ones 

which do are in some way related to the power spectrum: correlation techniques, frequen 

cy-domain techniques, and a least-squares approach (Fig. 4). Among the correlation tech 

niques we find the well known autocorrelation function which became successful in pitch 

determination of band-limited signals when it was combined with time-domain center clip 

ping (Sondhi, 1968; Rabiner, 1977). Its counterpart is given by applying a distance func-
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Short-Term Analysis Pitch Determination 

^tfVV* '•*"*■"'-"™"'-^'•"■ "A^.MHk*.+1 Time 

Correlation 

Techniques 

(Center Clip and) 

Autocorrelation 

T 
Frequency-Domain 

Analysis 

Maximum 

Likelihood 

Harmonic Analysis 

Fig. 4. Methods of short-term analysis (short-time analysis) pitch determination. [Time and lag 

scales are identical; the frequency scale in the box Harmonic Analysis was magnified.] 

tion, for instance the average magnitude difference function AMDF (Sobolev and Baro-

nin, 1968; Ross et al., 1974): 

\x(n) -x(n+d)\ . (7) 

If the signal were strictly periodic, the distance function would take on a value of zero at 

d=To. For the quasi-periodic speech signal there will be a strong minimum in the AMDF 

at this value of the lag (delay time) d. In contrast to all other short-term PDAs where the 

estimate of 7q or Fq is indicated by a maximum whose position and value have to be deter 

mined, the minimum has an ideal target value of 0 so that we only need to determine its 

position. For this reason, distance functions do not require (quasi-)stationarity within the 

measuring interval; they can cope with very short frames of one pitch period or even less. 
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This principle thus represents the only short-term analysis PDA which is able to follow def 

inition (3) (Moser and Kittel, 1977). The AMDF has also been successfully applied to the 
linear-prediction residual (Un and Yang, 1977). 

The frequency-domain methods are also split up into two groups. Direct determination 

of Fo as the location of the lowest peak in the power spectrum is unreliable and inaccurate. 

It is thus preferred to investigate the harmonic structure of the signal. One way to do this 

is spectral compression, which computes the fundamental frequency as the greatest com 

mon divider of all harmonics. The power spectrum is compressed along the frequency axis 

by a factor of two, three etc. and then added to the original power spectfuffi. This operation 

gives a peak at Fo resulting from the coherent additive contribution of the higher harmon 

ics (Schroeder, 1968; Noll, 1970; Martin, 1981,1987). Some of these PDAs stem from theo 

ries and functional models of pitch perception in the human ear (Terhardt, 1979; Terhardt 

et al., 1982; Duifhuis et al., 1982; Hermes, 1988). - The second frequency domain tech 

nique leads back into the time domain. Instead of transforming the power spectrum itself 

(which would lead to the autocorrelation function), however, the inverse transform is per 

formed on the logarithmic power spectrum. This results in the well known cepstrum (Noll, 

1967), which shows a distinct peak at the "quefrency" (lag) d=To. 

Finally we have to mention the least-squares ("maximum likelihood") approach. This is 

originally a mathematical procedure to separate a periodic signal of unknown period To 

(Noll, 1970) from Gaussian noise within a finite signal. Since neither the speech signal is 

periodic nor the background noise (plus the aperiodic components of the speech signal it 

self) can be expected as Gaussian, the approach has to be slightly modified in order to work 

in a PDA (Wise et al., 1976; Friedman, 1977). 

In summary, short-term analysis PDAs provide a sequence of average pitch estimates 

rather than a measurement of individual periods. They are not very sensitive to phase dis 

tortions or to absence of the first partial. 

3.2 Example: Double-Transform PDA with Nonlinear Distortion in the Frequency Domain 

The sensitivity against strong first formants, especially when they coincide with the second 

or third harmonic, is one of the big problems in pitch determination. This problem is suit 

able met by some procedure of spectral flattening. 

Spectral flattening can be achieved in several ways. One of them is time-domain nonlin 

ear distortion, such as center clipping (Sondhi, 1968; Rabiner, 1977). A second way is lin 

ear spectral distortion by inverse filtering (Markel, 1972; Un and Yang, 1977). A third way 

is frequency-domain amplitude compression by nonlinear distortion of the spectrum. This 

algorithm operates as follows: 1) short-term analysis and transform into the frequency do 

main via a suitable discrete Fourier transform, 2) nonlinear distortion in the frequency do 

main, and 3) inverse Fourier transform. The resulting domain is again equivalent to the 

time domain; to avoid confusion, we will henceforth call it the lag domain. 

Two members of this group were already mentioned: the autocorrelation PDA (Rabin 

er, 1977) and the cepstrum PDA (Noll, 1967) which are more closely related than one 

might conclude from the presentation in Fig. 4. It is well known that the autocorrelation 

function can be computed as the inverse Fourier transform of the power spectrum. Here, 
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the distortion consists in taking the squared magnitude of the complex spectrum. The cep-

strum, on the other hand, uses the logarithm of the spectrum. The two methods therefore 

differ only in the characteristics of the respective nonlinear distortions applied in the spec 

tral domain. The cepstrum PDA is known to be rather insensitive to strong formants at 

higher harmonics but to develop a certain sensitivity with respect to additive noise. The 

autocorrelation PDA, on the other hand, is insensitive to noise but rather sensitive to 

strong formants. Regarding the slope of the distortion characteristic, we observe the dy 

namic range of the spectrum being expanded by squaring the spectrum for the autocorrela 

tion PDA, whereas the spectrum is substantially flattened by takingthelogarithm. The two 

requirements - robustness against strong formants and robustness against additive (white) 

noise - are in some way contradictory. Expanding the dynamic range of the spectrum em 

phasizes strong individual components, such as formants, and suppresses wideband noise, 

whereas spectral flattening equalizes strong components and, at the same time, raises the 

level of low-energy regions in the spectrum thus raising the level of the noise as well. Thus 

it is worth while to look for other characteristics that perform spectral amplitude compres 

sion. Sreenivas (1981) proposes the 4th root of the power spectrum instead of the logarithm. 

For larger amplitudes this characteristic behaves very much like the logarithm; for small 

amplitudes, however, it has the advantage to go to zero and not to -oo. Weiss et al. (1966) 

use the amplitude spectrum, i.e., the magnitude of the complex spectrum. 

Indefrey et al. (1985) implemented these principles together with optional preproces 

sing to systematically investigate the performance of these PDAs. The four nonlinear spec 

tral functions mentioned before (power spectrum, amplitude spectrum, fourth root of 

power spectrum, and logarithm) were, among other tests, evaluated using signals with add 

ed noise at various noise levels. The PDA was found to break down somewhere between 

-6 and -12 dB SNR. This value is consistent with data reported elsewhere in the litera 

ture for related PDAs (Schroeder, 1968; Noll, 1970; Wise et al., 1976) and shows that there 

exist a number of short-term PDAs that are extremely noise resistant. 

Knowing that many errors arise from a mismatch during short-term analysis (which re 

sults in too few or too many pitch periods within a given frame), Fujisaki et al. (1986) inves 

tigated the influence of the relations between the error rate, the frame length and the actu 

al value of 7q for an autocorrelation PDA which operates on the LP residual. The optimum 

occurs when the frame contains about three pitch periods. Since this value is different for 

every individual voice, a fixed-frame PDA runs nonoptimally for most situations. For an 

exponential window, however, this optimum converges to a time constant of about 10 ms 

for all voices. For a number of PDAs, for example the autocorrelation PDA, such a window 

permits recursive updating of the autocorrelation function, i.e., even sample-by-sample 

pitch estimatran^vithoutxxcessivexomputatronalxffort. 

4. Time-Domain Pitch Determination Algorithms 

This category of PDAs is less homogenous than that of the short-term analysis methods. 

One possibility to split them up is according to the way how the burden of data reduction 
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is distributed among the preprocessor and the basic extractor. Doing this, we find most 

time-domain PDAs between two extremes (Fig. 5): 

1) The burden is imposed on the preprocessor. In the extreme case, only the waveform 

of the first harmonic is offered to the basic extractor. 

2) The burden is imposed on the basic extractor, which then has to cope with the whole 

complexity of the temporal signal structure. In the extreme case, the preprocessor is totally 

omitted. 

Time-domain PDAs are principally able to track the signal period by period. At the out 

put of the basic extractor we find a sequence of period boundaries (pitch markers). Since 

the local information on pitch is taken from each period individually, time-domain PDAs 

are more sensitive to local signal degradations and thus less reliable than the majority of 

their short-term analysis counterparts. On the other hand, time-domain PDAs may still op 

erate correctly even when the signal itself is irregular due to temporary voice perturbation 

or laryngealization. 
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4.1 Temporal Structure Investigation 

A pitch period is the truncated response of the vocal tract to an individual glottal impulse. 

Since the vocal tract behaves like a lossy linear system, its impulse response consists of a 

sum of exponentially damped oscillations. It is therefore to be expected that the magnitude 

of the significant peaks in the signal is greater at the beginning of the period than versus the 

end (Fig. 6). Appropriate investigation of the signal peaks (maxima and/or minima) leads 

to an indication of periodicity. 

There are problems associated with this approach, however. First, the frequencies of 

the dominant damped waveforms are determined by the local formant pattern and may 

change abruptly. Second, the damping of the formants, particularly of a low first formant, 

is often quite weak and can be overrun by temporary changes of the signal level. Third, if 

the signal is phase distorted, different formants may be excited at different points in time. 

These problems are surmountable, but they lead to relatively complicated algorithmic 

solutions which have to regard a great variety of temporal structures. Since most of the pro 

gram instructions are decisions, however, these PDAs run relatively fast. The usual way to 

carry out the analysis is the following (Reddy, 1967; NJ.Miller, 1975; D. Howard, 1989). 

1) Do a moderate low-pass filtering to remove the influence of higher formants. 

2) Determine all the local maxima and minima. 

3) Exclude those extremes which are found insignificant until one significant point per 

period is left. 

4) Reject obviously incorrect poiflts-by local correction. 

Structural analysis, especially when many possible structures have to be reviewed, is a 

good application for self-organizing, nonlinear pattern recognition methods, i.e., for artifi 

cial neural networks. Such a PDA was introduced by I. Howard et al. (Howard and Huck-

vale, 1988, Howard and Walliker, 1989). The speech signal is first divided into 9 subbands 

with a subsequent half-wave rectification and second-order linear smoothing in each chan 

nel. The underlying idea is to obtain a representation similar to that in a wide-band spectro-
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gram (cf. Fig. 11). The basic extractor consists of a four-layer perceptron structure, the in 

put layer comprising 41 successive samples with 9 channels each. TWo hidden layers with 

10 units each and a fully connected network are followed by a one-unit output layer which 

is intended to yield an impulse when the network encounters a signal structure associated 

to the instant of glottal closure. The network is trained using (differentiated) output signals 

of a laryngograph (cf. Sect. 6.2) as reference data. Such a structure has the advantage that 

it can be based upon several features occurring at different instants during a pitch period. 

It was shown to outperform conventional devices of the same type, for instance the peak-

picking PDA (D. Howard, 1989; see next paragraph) which was evaluatedfor comparison. 

A different solution originates from the analog domain (Dolansky, 1955; Filip, 1969; 

Winckel, 1964). The envelope of the period is modeled by a cascade of analog differentia 

tors and diode-resistance-capacitance circuits with short rise time constants and compara 

tively long decay time constants. These circuits emphasize the principal peaks of the signal 

and suppress all the others. The performance, however, strongly depends on the proper 

adjustment of the decay time constants. For that reason this relatively simple device works 

well only for a restricted range of Fq (about 2 octaves). A manual range switch or some 

thing similar is required if a wider range of Fq is to be analyzed. Due to its simplicity, this 

principle has been revived in a recent application for cochlear prostheses (D. Howard, 

1989). Using a logarithmic amplifier, Howard's PDA avoids a lot of problems associated 

with the older devices, and his device compares favorably to a number of other PDAs 

tested for this special application. 

4.2 Fundamental Harmonic Processing 

Fo can be detected in the signal via the waveform of the fundamental harmonic. If present 

in the signal, this harmonic is extracted from the signal by extensive low-pass filtering in the 

preprocessor. The basic extractor can then be relatively simple. Figure 7 shows the princi 

ple of three basic extractors: the zero crossings analysis basic extractor as the simplest de 

vice, the nonzero threshold basic extractor, and finally the threshold analysis basic extrac 

tor with hysteresis. The zero-crossings analysis basic extractor sets a marker whenever the 

zero axis is crossed with a defined polarity. This requires that the input waveform has two 

and only two zero crossings per period. The threshold analysis basic extractor sets a marker 

whenever a given nonzero threshold is exceeded. The threshold analysis basic extractor 

with hysteresis acts like the normal threshold analysis basic extractor except that the mark 

er is not set before a second (lower) threshold is crossed in opposite direction. This more 

elaborate device requires a lesser degree of low-pass filtering in the preprocessor. 

The requirement of extensive low-pass filtering is one of two weak points of this other 

wise fast and simple principle. For the zero-crossings analysis basic extractor an attenua 

tion of 18 dB/octave is necessary within the range of Fq to be determined (McKinney, 1965; 

cf. also Fig. 7). Accordingly, the amplitude of the signal at the basic extractor will vary by 

more than 50 dB due to the variations of Fq alone. This dynamic range, increased by the 

intrinsic dynamic range of the signal (at least another 30 dB), is too much for the PDA to 

work correctly over the whole range of Fq. The application of a zero-crossings analysis ba 

sic extractor thus limits the possible fundamental frequency range. For the threshold analy-
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sis basic extractor the problem is not so acute, but the fact that the threshold must be 

adapted to the overall signal amplitude complicates the design of the PDA. In addition 

there is a systematic measurement artefact associated with the threshold-analysis basic ex 

tractor when the amplitude of the input signal varies and the threshold is not properly 

adapted (Fig. 8). Another inaccuracy (Fig. 9) is intrinsic to the first partial of the signal. 

When Fq is close to the formant Fl, variations of that formant result in time-variant phase 

distortions of the first partial which will locally change the period duration and with it the 

Tq estimate. These inaccuracies are in the order of a few percent; yet they may be intoler 

able if the respective application requires high accuracy. 

In a number of applications, such as voice quality measurement or preparation of refer 

ence elements for time-domain speech synthesis (Charpentier and Moulines, 1989), where 

the signals are expected to be clean, the use of a PDA applying first-partial processing may 

be advantageous. Dologlou and Carayannis (1989) developed a PDA that overcomes a 

great deal of the problems associated with the filter necessary to isolate the first partial. An 

adaptive linear-phase low-pass filter is applied in the preprocessor. This filter consists of 

a variable-length cascade of second-order filters with a double zero in the z plane at z = -1. 

These filters are consecutively applied to the input signal; after each step the algorithm 
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nusoid with the frequency/=Fo=420 Hz (upper line). The formant changes from 300 to 650 Hz 

(this corresponds to a transition [i—a]). The measurement of Tq is influenced by the phase shift 

caused by the formant change. (Third line) Deviation of the estimate 7e when a zero-crossings 

analysis basic extractor is used; (bottom line) same for a threshold-analysis basic extractor 

(threshold as in second line) 
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tests whether the higher harmonics are sufficiently attenuated; if yes, the filter stops. To is 

then derived from the remaining first partial by a simple maximum detector. Very low-fre 

quency noise is tolerable since it barely influences the positions of the maxima. 

The second weak point is that this principle is a priori restricted to environments where 

the first harmonic is present in the signal. There are many applications where this is the 

case (for instance, in voice quality measurement). If such a PDA, however, is to be applied 

to processing band-limited signals, the first harmonic must be enhanced or reconstructed. 

One way to do this is nonlinear distortion. In that respect, many proposals have been made 

from the beginning on (e.g., Griitzmacher and Lottermoser, 1937; Risberg et al., 1960). No 

single nonlinear characteristic, however, is able to enhance the first harmonic of the signal 

in an optimal way for any situation, i.e., for any speaker or environmental condition 

(McKinney, 1965; Hess, 1979); some of them work well in a constrained environment (for 

instance only with band-limited signals or male voices) or in a realization where several 

channels with different nonlinear functions are combined (Hess, 1979). 

4.3 Simplification of the Temporal Structure 

Algorithms of this type take on some intermediate position between the principles of struc 

tural analysis and fundamental harmonic extraction. The majority of these algorithms fol 

low one of two principles: a) inverse filtering, and b) epoch detection. Both these prin 

ciples deal with the fact that the laryngeal excitation function has a temporal structure 

which is much simpler and more regular than the temporal structure of the speech signal 

itself, and both methods, when they work, are able to follow definition (1) if the signal is 

not grossly phase distorted. 

The inverse filter approach cancels the transfer function of the vocal tract and thus re 

constructs the laryngeal excitation function (cf. also Sect. 5.1). If one is interested in pitch 

only and not in the excitation function itself, a crude approximation of the inverse filter is 

sufficient. Such an approximation is realized for instance when the analysis is confined to 

the first formant (Hess, 1976). The inverse filter approach has one weak point which occurs 

frequently with female voices. When Fq is high, it may coincide with the first formant. If the 
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inverse filter is not blocked, it then removes the fundamental harmonic (which is extremely 

strong in this case) from the signal and brings the PDA into failure. 

The second principle, epoch extraction, is based upon the fact that at the beginning of 

each laryngeal pulse there is a discontinuity (in form of an impulse) in the second deriva 

tive of the excitation function. Usually this discontinuity cannot be reliably detected in the 

speech signal due to phase distortions which occur when the waveform passes the vocal 

tract. The signal is thus first phase shifted by 90° (applying a Hilbert transform). The 

squares of the original and the phase shifted signals are then added and yield a new signal 

which represents the instantaneous amplitude of the signal and now shows-a distinct peak 

at the time when the discontinuity in the excitation function occurs. The original method 

works only when the spectrum of the investigated signal is flat to some extent. To enforce 

spectral flatness, the analyzed signal is for instance band-limited to high frequencies well 

above the narrow-band lower formants (Ananthapadmanabha and Yegnanarayana, 1975). 

Another way is is to analyze the LPC residual (Ananthapadmanabha and Yegnanarayana, 

1979) or to filter the signal into subbands (De Mori et al, 1977). 

The epoch detection principle depends on the presence of a discontinuity in the second 

derivative of the laryngeal excitation function. This discontinuity is often weak, especially 

in back vowels like [u], when a formant exactly coincides with the first or a higher harmon 

ic, or when speech is uttered with a soft or a falsetto voice. In two more recent approaches 

(Di Francesco and Moulines, 1989; Cheng and O'Shaughnessy, 1989), this drawback was 

overcome by the finding that the global statistical properties of the waveform change with 

glottal opening and closing as well. These PDAs, which exploit different features of the 

signal and were developed independently from each other, derive and apply a generalized 

maximum-likelihood measure that indicates the instant of glottal closure more precisely 

than previous epoch-detection PDAs (cf. also Sect. 5.2). 

4.4 Multi-channel approaches 

Except for the algorithmic investigation of the temporal structure and — nowadays -

epoch detection, most simple time-domain PDAs are restricted with respect to the range 

of Fq or the type of signal to be processed. One way to increase the range or the reliability 

of these PDAs is to implement several of them in parallel and to perform some decision as 

to which one has the "correct" output. The partial PDAs may be identical in design, and 

each of them may process a subrange of Fq (McKinney, 1965; Leon and Martin, 1969). On 

the other hand, they may apply different principles without restriction of the frequency 

range. The PDAs by Risberg et al. (1960) or by Hess (1979), for instance, use several non 

linear functions to enhance the first harmonic in different ways. Gold and Rabiner (1969) 

combine several simple peak detection basic extractors together with a pattern-matching 

procedure. The selection criteria in order to find the most likely channel are defined by a 

certain channel hierarchy, by a regularity check applying a minimum-frequency selection 

principle (Risberg et al., 1960; Hess, 1979), by statistical measures (Bruno et al., 1982), or 

by syntactic rules (De Mori et al., 1977). The selection is continuously checked so that the 

PDA is able to change its choice at any time. 
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One problem with time-domain multichannel PDAs is that the individual channels 

often mark period boundaries at different instants in time, for instance when significant 

maxima and minima are exploited independently of each other (Gold and Rabiner, 1969). 

Unless there is a special synchronization routine (Hess, 1979), such PDAs are no longer 

able to correctly synchronize themselves with the signal and thus have to operate according 

to the incremental definition (3) or even the short-term definition (4) although they per 

tain to the time-domain category. 

Multi-channel preprocessing by a filter bank dates back to the days of the channel vo 

coder where the spectral analyzer could also be used as a preprocessor for pitch deter 

mination. If the bandwidths of the channels are not too great, there will not be more than 
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one partial in the lower channels and not more than one formant in the mid and upper 

channels each. A PDA can thus easily extract the fundamental harmonic once it knows in 

which channel it is to be found. On the other hand the filter bank output, taken as a whole, 

behaves in a way similar to a wide-band spectrogram. Those channels which carry the 

waveforms of the formants coherently reveal maxima of the envelope at the beginning of 

each pitch period after the instant of glottal closure. This feature can also be exploited for 

a subsequent structural analysis. 

One of the first PDAs of this kind was developed and investigated by Yaggi (1962). Yag-

gi, however, reported problems with phase distortions in the filter bank: With nowaday's 

digital filter technology such filter banks can be built as linear-phase networks, and the re 

cent wavelet transform (cf. the PDA by Katambe and Boudreaux-Bartels, 1990), which 

may be applied like a bank of octave filters, provides another effective means for its imple 

mentation. Such a preprocessor (with 9 channels) also serves as the input for the PDA by 

I. Howard et al. (1989) where the basic extractor is realized by a neural network which per 

forms a structural analysis and is trained to determine the instant of glottal closure. 

5. Glottal Inverse Filtering. Determining the Instant of Glottal Closure 

5.1 Glottal Inverse Filtering 

Glottal inverse filtering is the approximative reconstruction of the excitation signal (the 

glottal waveform) from the speech signal. From the linear model of speech production we 

know that the voiced speech signal x(n) can be thought of as being generated by the pulse 

generator characterized by its z transform P(z). The pertinent pulse sequence/?(rc) passes 

the glottal shaping filter G(z\ at the output of which we have the glottal excitation signal 

s(n). This signal excites the supraglottal system consisting of the vocal tract V(z) and the 

radiation component R(z). In terms of transfer functions we obtain 

X{z) = P(z) G(z) V(z) A , (8) 

where>4 represents the overall amplitude. A PDA, in this model, can be defined as a device 

which determines P{z) fromJ^z). For glottal inverse filtering the task would then read 

Thus a filter has to be applied whose transfer function reverts the influence of the vocal 

tract and the radiation component. 

In speech production the radiation component is the low-impedance load which termi 

nates the vocal tract; the volume velocity of the air flow at the lips (and the nose) is con 

verted into sound pressure in the distant field. In a first approximation, which is valid for 

lower frequencies where the wavelength is large compared to the diameter of the mouth 

opening, this conversion involves a differentiation, causing a zero at zero frequency. In the 

inverse filter this zero is reverted by an integrator component, i.e., by a first-order recur 

sive filter with a pole near z=l. For reasons of stability, the pole must stay inside the unit 

circle. 
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Fig. 12a-h. Inverse-filter analysis, (a) Signal: sustained vowel /e/, speaker LJB (male), 32 ms 

per line; (b) waveform of the formant F\\ (c-e) same as (b), this time for the formants Fl-F4\ 

(f) differentiated output signal of the inverse filter; (g) output signal of the inverse filter; (hj 
reconstructed glottal excitation signal, filtered by the inverse filter and the integrator. The in 

verse filter was tuned to the following formant frequencies and bandwidths- Fl=357 Hz 

F2=2056 Hz, 7^3=2493 Hz, F4=3500 Hz; Bl=26 Hz, B2=40 Hz, B3=150 Hz, B4=250 Hz. The 

transfer function of the integrator filter used is l///i(z)=l-0.995z~1. All signals were normal 
ized before plotting. The numbers on the right-hand side of (a-e) indicate the amplitude of the 
signal and the individual formants; the amplitude of the signal was normalized to a value of 
10000 

As glottal inverse filtering is intended to yield a waveform rather than certain instants in 

time, the signal must not at all be phase distorted at low frequencies - a condition nowa 
days easily met by digital recording equipment. 

Glottal inverse filtering requires accurate determination of all formants. For this the 

following principles have4>een* implemented: 

1) individual determination of the different formants, mostly in an interactive way (e.g. 
Lindqvist, 1965); 

2) automatic formant measurement by nonstationary linear-prediction (LPC) analysis 

during the closed-glottis interval (Wong et al., 1979, Alku, 1992); and 

3) cepstrum techniques. 

In the classical method (e.g. Lindqvist, 1965), which is carried out in an interactive way, an 



HES-22 

antiresonance circuit (i.e., a second-order filter with a complex zero) is provided to cancel 
each formant individually. The input signal is confined to stationary vowels with significant 
high-frequency components and formants that are well separable, such as [a] or [el A 
crude formant analysis provides reasonable initial estimates. Then the antiresonance fil 
ters are manually adjusted to the frequencies and bandwidths of the individual formants 
Figure 12 shows an example. 

A glottal inverse filter using linear-prediction (LPC) analysis was proposed by Wong 
Markel, and Gray (1979). Linear prediction models the speech tract as a digital all-pole 
filter, r 

k 

x(n) = e(n)+ 5>(#i-i) , (10) 

and determines the filter coefficients in such a way that the filter optimally matches the 
structure of the signal. "Optimally," in this respect, means that the filter has been opti 
mized according to a given criterion. The criterion mostly used involves minimizing the 
short-term energy of the prediction error, i.e., the energy of the residual signal e(n) within 
the frame analyzed. This criterion must be further confined for this special application. 

Equation (10) says that a sample x(n) can be approximately predicted as the weighted 
average of the k previous sample of the signal x; e(n) will be the prediction error at the 
instant n. From the speech production point of view, ifx(n) is the speech signal, and if the 

filter is to serve as a model for the speech tract, then e(n) represents some kind of excita 
tion signal; however, e(n) is usually not identical with the glottal waveform. LPC analysis 
can be used here when the algorithm is modified in such a way that e(n) represents the 
glottal waveform itself or at least a waveform having a defined relation to it. The most 
straightforward way to achieve this is to verify that the LPC filter transfer function A(z) 
represents the transfer function V(z) of the vocal tract; in this case the residual signal e(n) 
represents the glottal waveform except for the radiation component, whose reciprocal 
must be supplied in the form of the first-order integrator filter already known from the ear 
lier discussion in this section. 

If A(z) is to represent the vocal-tract transfer function V(z) it is necessary to be certain 
that the poles of^(z) represent formants only and nothing else. This leads to a modifica 
tion of the LPC algorithm which involves the following two steps. 

1) The poles oL4(z) have to be explicitly determined after the analysis; poles that do not 
pertain to a formant must be excluded from the inverse filter. Routines which perform this 
task are standard in most scientific program libraries. Once the poles are explicitly known, 
one can easily assign them to the formants as far as possible and exclude the remainder! 
One can also exclude a whole frame from further processing if the LPC algorithm has ob 
viously missed a formant (this happens, for instance, when two real poles are supplied 
instead of a low-frequency or high-frequency formant). 

2) In order to represent the vocal-tract transfer function V(z) as accurately as possible, 
the LPC analysis should be carried out during the closed-glottis interval only. During the 
open-glottis interval the subglottal system and the vocal tract are coupled via the glottis. 

This coupling affects the transfer function of the supraglottal system: subglottal formants 
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Fig. 13a-f. Glottal inverse filter by Wong et al. (1977,1979): example of performance, (a) Signal-
sustained vowel /e/, male speaker, 32 ms per line; same signal as in Fig.12; (b) prediction error 
depending on the starting point q of the frame with the maximum of the normalized error indi 
cated on the right-hand side; (c) reconstructed glottal waveform (the integrator being the same 
as; in Fig.12); (d) differentiated output signal of the inverse filter; (e) locations of the poles of 
A(z) in the z plane for those cases where A(z) was found appropriate to serve for use in the in 
verse filter; (f) locations of the poles in^(z) for all other cases; ( ) frame selected for 
computation of the inverse filter. All the frames which pertain to (e) have been marked in (b) by 
a short continuation line below the baseline. Formant frequencies and bandwidths for the in 
verse filter applied: Fl=352 Hz, F2=2081 Hz, F3=2652 Hz, F4=3733 Hz; 51 = 10 Hz 52=109 
Hz, 53=193 Hz, 54=246 Hz. The constraints of the LPC analysis to separate those frames which 
arc suited for selection for the inverse filter (e) and the remainder (f) are rather simple A frame 
was excluded from selection when 1) the pertinent LPC filter was not stable, 2) less than 4 for 
mants were detected in the frame, 3) the frame contained a formant frequency below 250 Hz or 
4) one or several formants had excessively large bandwidths. Although there is some variance in 
the estimatesin <e),.4he-formant frequeneies-and-bandwidthsare determined rather consistently 
for the pertinent frames 

and antiformants are added to the overall transfer function, and the frequencies and band-
widths of the vocal-tract formants are slightly changed. (Wakita and Fant, 1978). For nor 
mal LPC analysis the global estimate is sufficient; here, however, greater accuracy is re 
quired. 
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Compared to an ordinary frame for LPC, the closed-glottis interval is rather short so that 
the covariance method of linear prediction has to be applied. If the assumption holds that 
the vocal tract is not excited during the closed-glottis interval, the prediction error will be 
very low in this case since the vocal tract then represents a linear passive all-pole system. 
To determine the closed-glottis interval therefore the LPC analysis (using the covariance 
method and a frame length K which guarantees that k+K+1 does not exceed the length of 
the closed-glottis interval) must be carried out at each sample individually (i.e., using a 
frame interval equal to the sampling interval of the signal). Low prediction error then indi 
cates that the frame is totally embedded™ the etesed-glottis interval (cf. Fig. 13). 

An alternative criterion for the selection of the closed-glottis interval is the stability of 
the modeled filter A(z). During the closed-glottis interval the waveforms pertaining to the 
formants always decay; in this case the LPC filter A(z) will be stable. On the other hand, 

an instable filter A(z) indicates that there is strong excitation within the analysis interval.' 
A problem with the algorithm by Wong et al. (1979) is that it requires an LP analysis 

over the closed-glottis interval. In some voices the closed-glottis interval is very short, or 

the glottis even does never close completely. This degrades the estimate of the formants 

and thus the performance of this algorithm. Alku (1992) developed a glottal inverse filter 

that allows us to perform an iterative LP analysis more globally. First the general slope of 
the spectrum is approximately flattened by an inverse filter of order 1 to yield an optimal 

starting point for formant estimation. An LP analysis is carried out over that filtered signal 

to yield a representation for the transfer function V{z) of the vocal tract. The original signal 
is then inverse filtered with this filter and passed through an integrator filter. This yields a 

reasonable estimate of the glottal waveform which is then refined in a second iteration 

which is almost identical to the first part of the algorithm. It is only now, however, that the 
frame length is confined to exactly one pitch period ranging from one point of maximal 
glottal opening (which is determined from the glottal waveform estimate) to the next one. 

Again the spectrum is flattened using a low-order inverse LP filter, and the vocal-tract 

transfer function is estimated. Since the algorithm now acts period synchronously, the re 

sults are much more accurate than in the first step. Again the original signal is inverse fil 
tered with 1/F(z) and passed through an integrator filter to cancel the effect of lip radi 
ation; this yields the final estimate for the glottal waveform. 

5.2 Determining the Instant of Glottal Closure 

Among all events that characterize the pitch period the instant of glottal closure (IGC) oc 

cupies a key position. Due to the Bernoulli force exerted on the vocal cords by the air flow 

in the glottis during the open-glottis interval, the vocal cords are so strongly forced togeth 

er that they close abruptly and remain closed for about half the glottal cycle (for details see 

the discussion in Sect.3.1). The air flow is abruptly terminated; this causes a discontinuity 

in the time derivative of the glottal volume velocity. All formants, particularly the higher 

ones, are thus simultaneously excited at the IGC. It is thus justified from the speech pro 

duction point of view to define the beginning of the pitch period in the speech signal to coin 
cide with the IGC. 



HES-25 

The IGC is rather prominent in normal phonation, i.e., modal register and medium 
voice effort. It is rather prominent during vocal fry as well. For soft voices as well as for the 
falsetto register glottal closure still occurs, but somewhat more gradually. In some special 
cases (breathy voice, certain voice pathologies) the glottis never closes completely. This 
kind of speech is characterized by weak higher formants. On the other hand, the instant of 
glottal opening, which passes rather smoothly most of the time, tends to exhibit a second 
discontinuity (and thus tends to become a second point of excitation) when the voice effort 
is high. 

We can thus expect that the IGC usuaHy represents the most significant and - at the 
same time - the most easily detectable single event within the pitch period when a refer 
ence point with respect to the excitation function is required. In spite of this the task of 
IGC determination is not at all trivial. 

Scanning the PDAs discussed up to now, we see that the algorithms that apply structural 
simplification (in particular epoch detection) are best suited for IGC determination. In 
principle most time-domain PDAs place their markers at positions which have some de 
fined relation to the excitation signal. But in many cases this relation is time variant since 
it depends on the momentary state of the vocal tract. In addition, IGC determination im 
plies the detection of a discontinuity, which is wide-band information, and which is thus 
masked both by narrow-band formants and high-frequency attenuation in the signal. 

The PDA by Ananthapadmanabha and Yegnanarayana (1979) raises the question of the 
phase of the excitation signal. The ideal case is given when the excitation pulse has a unipo 
lar peak. If the excitation signal is phase shifted by 90°, the IGC coincides with a zero 
crossing of the excitation pulse, and the amplitude of the pulse is much reduced. This diffi 
culty is overcome by investigating the instantaneous magnitude of the signal which is pulse-
like when the spectrum of the signal investigated is approximately flat. 

The already-mentioned PDA by I. Howard et al. (1989), which applies a neural network 
for structural analysis of the output of a filter bank, can be trained toward detecting the 
IGC. The neural network performs some kind of holistic scan of the structural properties 
of the signal segment at its input layer and fires at the moment for which it has been 
trained. This means that the temporal assignment between the temporal structure of the 
signal and the instant at which the device signals a pitch period boundary is arbitrary and 
a matter of training. The PDA will thus be trained to detect the IGC when the desired out 

put of the neural net has such a shape that it is close to unity at the IGC and close to zero 
everywhere else. The differentiated output signal of a laryngograph, after suitable normal 
ization, has this property (cf. Sect. 6.2). 

6. Evaluation and Application 

To evaluate the performance of a measuring device, one should have another instrument 

with at least the same accuracy. If this is not available, at least objective criteria - or data 

- are required to check and adjust the behavior of the new device. In pitch and voicing 

determination both these bases of comparison are tedious to generate. There is no PDA 
which operates without errors (Rabiner et al., 1976). There is no reference algorithm, even 
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with instrumental support, that goes completely without manual inspection or control 
(Krishnamurthy and Childers, 1986; Hess and Indefrey, 1987). Only rather recently speech 
databases with reference pitch contours and voicing information have become available 
(e.g., Carre et al., 1984; Picone et al., 1987), and only then designers of new PDAs started 
providing detailed data on the performance of their algorithms (e.g. Fuiisaki et al 1986-
Indefrey et al., 1985). '' 

6.1 Error Analysis in Pitch Determination 

According to the classical study by Rabiner et al. (T976), which established the guidelines 
for the performance evaluation of these algorithms, PDAs (and voicing determination al 
gorithms, VDAs) commit four types of errors: 1) gross pitch determination errors; 2) fine 
pitch determination errors, i.e., measurement inaccuracies; 3) voiced-to-unvoiced errors; 
and 4) unvoiced-to-voiced errors. The latter two types represent errors of voicing deter 
mination whereas the first ones refer to pitch determination. 

Gross pitch determination errors are "drastic failures of a particular method or algorithm 
to determine pitch" (Rabiner et al., 1976). Usually an error is regarded to be gross when 

the deviation between the correct value of To or Fo and the estimate of the PDA exceeds 

the maximum rate of change a voice can produce without becoming irregular [Rabiner et 
al. (1976): 1 ms; Hess and Indefrey (1987): 10%; Krubsack and Niederjohn (1989): 0.25 

octave]. On the other hand, errorlike situations may also arise from "drastic failures of the 
voice to produce a regular excitation pattern," which is not very frequent in well-behaved 

speech (Dolansky and Tjernlund, 1968), but is nearly always the case when the voice tem 

porarily falls into vocal fry (Fourcin, 1974; Hollien, 1974; Secrest and Doddington, 1982; 

cf. Fig. 2). Hence, gross errors arise mainly from three standard situations. 

1) Adverse signal conditions: strong first formants, rapid change of the vocal tract posi 
tion, band-limited or noisy recordings. Good algorithms reduce these errors to a great ex 
tent, but cannot avoid them completely (Rabiner et al., 1976). 

2) Insufficient algorithm performance: e.g., mismatch of Fo and frame length (Fujisaki et 
al., 1986); temporary absence of the key feature in some algorithms. 

3) "Errors" that arise from irregular excitation of voiced signals. Since most algorithms 
perform some averaging or regularity check, they can do nothing but fail when the source 
gets irregular. 

When a PDA is equipped with an error detecting routine (and the majority of PDAs are 
even if no postprocessor is used), and when it detects that an individual estimate may be 
wrong, it is usually not able to reliably decide whether this situation is a true measurement 

error - which sheuW be corrected-or-atleast-indicated-- or a signaHrregularity, where the 
estimate may be correct and should be preserved as it is. This inability of most PDAs to 

distinguish between the different sources of errorlike situations is one of the great prob 
lems in pitch determination yet unsolved. 

Measurement inaccuracies cause a noisiness of the obtained 7o or Fo contour. They are 

small deviations from the correct value but can nevertheless be annoying to the listener. 
Again there are three main causes. 
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1) Inaccurate determination of the key feature. This applies especially to algorithms that 
exploit the temporal structure of the signal, for instance when the key feature is a principal 
maximum whose position within a pitch period depends on the formant F\. 

2) Intrinsic measurement inaccuracies, such as the ones introduced by sampling in digital 
systems. 

3) "Errors" from small fluctuations of the voice (jitter or shiommer), which contribute to 
the perception of "naturalness" and should thus be preserved (or even measured). 

Voicing errors are misclassifications of the VDA. We have to distinguish between voiced-
to-unvoiced errors where a frame is classified unvoiced although it is in fact voiced, and 

unvoiced-to-voiced errors with the opposite way of misclassification. This scheme, as estab 

lished by Rabiner et al. (1976), does not take into account mixed excitation. Voiced-to-un 
voiced errors and unvoiced-to-voiced errors must be regarded separately because they are 

perceptually not equivalent (Viswanathan and Russell, 1984), and the reasons leading to 

such errors in an actual implementation may be different and even contradictory. 

6.2 Developing Reference PDAs with Instrumental Help 

A number of former evaluations used a well-known algorithm, for instance the cepstrum 

PDA, whose performance was known to be good, and compared the algorithm(s) to be 

tested to the results of that one (Hess, 1983). Rabiner et al. (1976) used an interactive PDA 

to generate reference data. This procedure proved reliable and accurate but needed a lot 

of human work. Dal Degan (1982) took the output signal of a vocoder, where the pitch 

contour was exactly known, as the standard for his PDA evaluation. Bruno et al. (1982) 

evaluated the performance of a two-channel PDA using the output signal of a mechanic 

accelerometer which derives the information on pitch from the vibrations of the neck tis 

sue at the larynx. The same device (Stevens et al., 1975) was used by Viswanathan and Rus 

sell (1984) for their evaluation of five PDAs. Indefrey et al. (1985) used a laryngograph to 
yield the signal for generating a reference contour. 

Among all the algorithms used for determining a reference pitch contour, those meth 

ods appear most efficient which make use of an instrument (such as a mechanic accelerom 

eter or a laryngograph) that derives pitch directly from the laryngeal waveform. This type 

of algorithm avoids most errors pertinent to the problem of pitch determination from the 

speech signal, and it permits using natural speech for the evaluation of the performance of 

PDAs. Among the many instruments available [see (Hess, 1983, Chap. 5) for a survey] the 

laryngograph (Fourcin and Abberton, 1971; Childers and Krishnamurthy, 1985) is espe 

cially well suited for this kind of application. It is robust and reliable, does not prevent the 

speaker from natural articulation, and gives a good estimate for the instant of glottal clo 

sure. A number of PDAs have been designed for this device (e.g. Krishnamurthy and 

Childers, 1986; Hess and Indefrey, 1987). In addition, Childers et al. (1989) propose a 

four-category VDA exploiting the speech signal and the laryngogram. In the following, one 

of these algorithms (Hess and Indefrey, 1987) is presented in some more detail. 

The principle of the laryngograph is well known. A small high-frequency electric current 

is led through the larynx by a pair of electrodes which are pressed against the neck at the 

position of the larynx from both sides. The opening and closing of the glottis during each 
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Fig. 14a-c. Speech signal (a), laryngogram (b), and differentiated laryngogram (c). The markers 

delimiting the individual periods were derived from the maxima of (c). Signal: transition [ja]; 
speaker WGH (male) 

pitch period causes the laryngeal conductance to become time variant; thus the HF current 

is amplitude modulated. In the receiver the current is demodulated and amplified. Finally, 

the resulting signal is high-pass filtered in order to remove unwanted low-frequency com 

ponents due to vertical movement of the larynx 

Figure 14 shows an example of the laryngogram (the output signal of the laryngograph) 

together with the pertinent speech signal. In contrast to the speech signal, the laryngogram 

is hardly affected by the momentary position of the vocal tract, and the changes in shape 

or amplitude are comparatively small. Since every glottal cycle is represented by a single 

pulse, the use of the laryngograph reliably suppresses gross period determination errors. In 

addition, it supplies the basis for a good voiced-unvoiced discrimination since the laryngo 

gram is almost zero during unvoiced segments where the glottis is always open. Nonethe 

less, the laryngograph is not free from any problem: it may fail temporarily or permanently 

for some individual speakers, or it may miss the beginning or end of a voiced segment by 

a short interval, for instance when the vocal folds, during the silent phase of a plosive, con 

tinue to oscillate without producing a signal, or when voicing is resumed after a plosive, 

and the glottis does not completely close during the first periods (Childers and Krishna-

murthy, 1985). For such reason, visual inspection of the reference contour is necessary 

even with this configuration; these checks, however, can be confined to limited segments 

of the signal. 

What key feature is best used for delimiting the individual periods? According to the 

theory of voice excitation (van den Berg, 1958; cf. also Stevens, 1977), the instant of glottal 

closure is the point of maximum vocal-tract excitation, and it is justified to define this 

instant to be the beginning of a pitch period. In the laryngogram this feature is well docu 

mented. As long as the glottis is open, the conductance of the larynx takes on a minimum, 

and the laryngogram is low and almost flat. When the glottis closes, the laryngeal conduc-
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tance goes up, and the laryngogram shows a steep upward slope. The point of inflection 
during the steep rise of the laryngogram, i.e., the instant of the maximum change of the 
laryngeal conductance, was found suited best to serve as the reference point for this event. 

To press measurement inaccuracies due to signal sampling below the difference limen 
for perception of Fo changes over the whole range of Fo, a temporal resolution correspond 
ing to a sampling frequency of more than 100 kHz is required. The strategy of the algo 
rithm is as follows. 

1) The laryngogram, originally sampled at 16 kHz, is digitally differentiated by a first-
order nonrecursive differentiator filter. The algorithm then determines the significant 
maxima of the differentiated laryngogram; spurious maxima due to noise are suppressed 
by simple threshold discrimination. 

2) The locations of the maxima of the differentiated laryngogram represent the raw 
positions of the period delimiters ("markers"); around these points the sampling rate of 
the signal is increased by a factor of 8; after differentiating and interpolation, the location 
of the maximum is determined with a temporal resolution of 7.8 [xs. 

With passband and stopband cutoff frequencies of 5 and 9 kHz, respectively, and a stop-
band attenuation of more than 72 dB (to keep aliasing distortions below the level of the 
quantizing noise of the laryngogram), a 144th-order linear-phase interpolator filter proved 

necessary. The first-order differentiator filter is sufficient to estimate the positions of the 

raw markers at the original sampling rate of 16 kHz. For the accurate measurement, how 

ever, a 7th-order differentiator filter (referring to the original sampling frequency of 16 
kHz) gives a good approach to the ideal differentiator in the interesting frequency range 
below 5 kHz. To minimize roundoff errors, the two filters had to be combined to a 200th-or-

der nonrecursive filter so that differentiation and interpolation finally are performed in 
one step at the increased sampling frequency of 128 kHz. Same as before, this filter is only 
applied in the immediate vicinity of the raw markers. 

Although the use of the laryngograph reduces the number of gross errors to a minimum, 
there are still occasional failures of the algorithm in specific situations. Hence a simple 
error detection logic based on threshold analysis had to be incorporated. First of all, this 

logic suppresses weak markers that may occur due to noise in the laryngogram. If a rapid 

vertical movement of the larynx causes a "marker" to be set, this marker will occur in isola 

tion, not embedded in a train of markers as in voiced speech. Hence, if a single marker or 
a sequence of not more than two markers is detected within an unvoiced interval of at least 

200 ms on either side, the logic treats these markers as erroneous and removes them. For 

the case that this is not yet sufficient, an interactive routine for visual inspection has been 
provided that may be used to manually accept or reject individual markers that were not 
reliably accepted or rejected by the automatic procedure. 

6.3 Comparative Evaluations - Some More Results 

Due to the absence of reliable criteria and systematic guidelines, rather few publications 

on early PDAs included a quantitative evaluation of the algorithms presented. The main 
results of the classic study by Rabiner et al. (1976) read as follows. 
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1) None of the PDAs involved worked without errors, even under good recording condi 
tions. Each PDA had its own "favorite" error; nevertheless, any error condition actually 
occurred for any of the PDAs. 

2) Almost any gross error is perceptible; in addition, unnatural noisiness of a pitch con 
tour is well perceived. 

3) The subjective evaluation did not match the preference of the objective evaluation. 
In fact, none of the objective criteria (number of gross errors, noisiness of the pitch con 
tour, voicing errors) correlated well with the subjective scale of preference. 

Hence the question what errors in pitch and voicing determination are the really annoy 

ing ones for the human ear remained open. This issue was further pursued by Viswanathan 
and Russell (1984) who developed objective evaluation methods that are closely corre 

lated to the subjective judgments. The individual error categories are weighted according 

to the consistency of the error, i.e., the number of consecutive erronoeus frames, the mo 
mentary signal energy, the magnitude of the error, and the special context. 

Indefrey et al. (1985), concentrating on the evaluation of PDAs only, investigated sever 

al short-term PDAs in various configurations. Some of the results were shown further 

above (Sect. 3.2). In a sequel, Indefrey (1987) added several other PDAs to this evaluation. 

He showed that in many situations different short-term analysis PDAs behave in a comple 

mentary way so that combining them to a multi-channel PDA could lead to a better overall 
performance. 

7. Aspects of Application 

The area of speech communication systems is one of the important application areas of 

pitch determination. Other areas include a) phonetics and linguistics (including musicolo-

gy), i.e., the measurement of pitch contours as carriers of prosodic, phonetic, and musical 

information; b) education: training aids for the deaf or teaching aids for foreign languages; 

and c) the application as a diagnostic aid in voice pathology and phoniatrics. Here deter 

mination of source parameters from the signal can serve as a quick and easily accessible 

help for voice diagnostics and for examining the progress of voice therapy. In phoniatric 

practice direct measurement and investigation of the speech organs is usual and natural, 

and pitch determination instruments are a most valuable aid; deriving source parameters 

from the signal, however, is a hopeful alternative, in particular for early detection of devel 

oping voice diseases and for diagnostic evaluation of slight pathologies (Davis, 1978). 

Each of these applications has a different profile of requirements (Hess, 1983:521). 

With respect to these requirements the respective applications can be subdivided accord 

ing to whether the human ear is the final "customer" of a measured pitch contour or not. 

If the human ear is at the end of the chain the PDA is a part of, it is crucial to know whether 

there is a time delay for manual correction permitted or not. There is no time in vocoder 

systems or in an electronic musical instrument or in the recent application of speech-pro 

cessing hearing prostheses, e.g., cochlear implants (D. Howard, 1989; Fourcin et al., 1983). 

There is time for manual correction, on the other hand, in high-quality speech synthesis 

systems which concatenate original speech data in parametric or waveform-coded repre-
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sentation and need accurate pitch determination to manipulate pitch and duration (e.g., 
Charpentier and Moulines, 1989). Even a laryngograph may be applied for such a purpose 

(Krishnamurthy and Childers, 1986). In the last few years powerful waveform coding 
schemes which do not need a PDA at all or only a very rudimentary one have been devel 

oped that make a vocoder unnecessary in many applications. Those applications which will 
continue to require a PDA in speech communication systems, such as hearing prostheses 

or high-quality speech synthesis from stored data, are more fault tolerant than the vocoder. 

Future developments in the domain of pitch and voicing determination are thus likely to 

move away from the search for a new principle that-is able "to solve~everything" toward 

improved implementations of known algorithms that are cheap, fast and robust at the 
same time. 
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This paper describes an algorithm for the estimation of voice fundamental 

frequency (FO). While FO seems "well defined" for normal voiced speech, in 

fact there are many situations where the "true" FO is ambiguous. Thus, an 

operational definition of FO is called for. The approach described below has 

been refined by several authors over a period of almost 20 years. Programs 

embodying various versions of the algorithm have been in use for a comparable 

length of time and have demonstrated excellent performance. 

1 Fundamental Frequency Estimation 

Attempts to estimate a voicing state and a fundamental frequency in the speech 

signal are motivated by a speech production model which views the production 

mechanism as the concatenation of a quasi-stationary excitation source, and 

a quasi-stationary linear filter corresponding to the slowly-varying vocal track 

shape. The model produces unvoiced speech (as in the "s" sound) using white 

noise as the excitation source, and voiced speech (as in vowels) using a pulse 

train corresponding to glottal activity. Ideally, the voiced speech signal would 

be periodic, but in practice, the "true" period is sometimes equivocal, especially 

if only local-in-time evidence is available. This potential for ambiguity remains 

regardless of the transformation applied to the signal. 

1.1 Normalized Cross Correlation 

In the following discussion, we transform the speech signal using the cross-

correlation function (CCF). Given 

sm, m = 0,1,2,3,..., 

a sampled speech signal with sampling interval T, analysis frame interval t, and 

a window size w, at each frame we advance z = t/T samples with n — w/T 
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samples in the correlation window, w is chosen to be in the neighborhoos of the 

expected FO period; t is sized to adequately sample the time course of changes 

in FO. The CCF of K samples length may then be defined as 

where 
j+n-l 

e3 = £ -?, 

and z is the frame index for M frames. Note that —1.0 < (j) < 1.0. 

We refer to the value of k as the lag and to i as the /rarae index. We 

can represent (frmk graphically by assigning lag to the ordinate, frame index (or 

time) to the abscissa and the value of (j) at the corresponding time and lag to the 

degree of shading, with dark shading representing high values (close to 1.0) and 

white representing low values (close to -1.0). These graphical representations 

are referred to as correllograms. 

An utterance containing clear and problematic voiced speech sections with 

the corresponding CCFs and correllogram may be seen in Figure 1. The only 

local evidence for the true FO is the location and height of maxima in the CCF. A 

segment of unvoiced speech and its CCF may be seen in Figure 1(D). Note that, 

in general, the CCF of voiced speech has maxima with comparable amplitudes 

at lag intervals corresponding to integer multiples the fundamental period while 

the CCF of unvoiced speech has its most prominent maximum at zero lag. If the 

CCF for the problematic case is viewed in a larger temporal context, as in the 

correlogram of Figure 1(B), the location of the local maximum corresponding 

to the "true" FO becomes more evident. 

Note the following general observations regarding speech and speech CCFs: 

1. The local maximum in 0 corresponding to the "true" FO for voiced speech 

(excepting the maximum at zero lag) is usually the largest and is close to 

1.0. 

2. When multiple maxima in 0 exist and have values close to 1.0, the maxi 

mum corresponding to the shortest period is usually the correct choice. 

3. True cj) maxima in temporally adjacent analysis frames are usually located 

at comparable lags, since F0 is a slowly-vary ing function of time. 

4. The "true" F0 occasionally changes abruptly by doubling or halving. 

5. Voicing tends to change states with low frequency. 

6. The largest non-zero-lag maximum in 0 for unvoiced speech is usually 

considerably less than 1.0. 
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7. The short-time spectra of voiced and unvoiced speech frames are usually 

quite different. 

Historically, these characteristics and analogous ones pertaining to other 

transformations of the speech, such as the autocorrelation and AMDF, have 

guided the design of many FO estimation algorithms (see [2] for a thorough 

review), but combining the often conflicting evidence to determine the voicing 

state (voiced or unvoiced) and, if voiced, the FO, has been an ongoing problem. 

In the final analysis, the problem is not completely soluble, since the assump 

tions of a two-state voicing model and a single FO are both oversimplifications. 

On the other hand, the partial solutions achieved so far have led to practical 

developments in speech technology and provide measurements useful to those 

studying the basic properties of human speech and the voice. 

1.2 Dynamic Programming 

Dynamic programming [7] provides a computational framework for integrating 

the contextual and local evidence available in the correlogram to arrive at a 

globally best estimate of voicing state and FO. Apparently the first reported use 

of dynamic programming in a similar context was the DYPTRACK algorithm, 

based on the AMDF and dynamic programming [1], but this work was not made 

public at the time. This general approach to parameter estimation is clearly 

outlined by Ney [4]. The approach to FO estimation described below is similar 

to that first publically described by Secrest and Doddington in 1983 and shown 

by them to have excellent performance simultaneously estimating FO and the 

voicing state [5, 6]. 

Dynamic programming may be applied to the FO problem as follows: 

Let: 

Ii be the number of states hypothesized at frame z, which is one plus the 

number of non-zero-lag local maxima in </> at frame i. Thus, at each frame, U -1 

FO's (voiced states) and one unvoiced state will be hypothesized. 

Cij be the value of the jth non-zero-lag local maximum in (/> at frame i. 

Lij be the lag at which C^ was observed. 

We may now define an objective function as the local cost for hypothesizing 

that frame i is voiced with period tLij as 

di3 = a(l - Ci5) + PLij, l<j< h, 

while the cost for the distinguished unvoiced hypothesis at frame i is 

where a and (3 are positive constants. This implements observations 1, 2 

and 6 by favoring dj close to 1.0 and shorter lags for voiced frames and dj 
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close to zero for unvoiced frames. The constant 7 permits adjustment of the 

liklihood of a voiced decision. 

The inter-frame FO transition cost 6 at frame i when hypotheses j and k at 

the current and previous frames are both voiced is defined as 

5ijk = min{£, fa + |£ - ln(2.0)|), {v + \£- ln(0.5)|)}, 

where 

f = In -^, i < j < /<; 1 < A; < /i_i 
^i—life 

and 77 and 1/ are positive constants. This implements observations 3 and 4 by 

making cost an increasing function of inter-frame frequency change, but allowing 

octave jumps at some specifiable cost. 

Given observation 7 above, assume we have some scalar stationarity function 

Si, 0 < Si < 1, which is a decreasing function of the magnitude of the rate of 

change of the speech signal's spectrum with time, we would expect Si to have 

minima at boundaries between voiced and unvoiced speech segments. 

A voicing state transition cost to be applied when the voicing states hypoth 

esized for the current and previous frames differ is now defined as 

Siiik = Sijh-x = *l> + A5», 1 < A; < ii-i; 1 < j < h, 

where if) and A are positive constants. This implements observations 5 and 7 

by imposing a cost for any voicing state transition, but reducing the cost of the 

transition when the signal spectrum is changing rapidly. 

We may now define the optimal objective function for frame i as 

Dij = dij + mm {Di-lk + &ijk}-> l<j< /», 

with the initial conditions 

Doj=0, 1< j< Jo; Jo = 2. 

For each state at each frame we save the "back pointers" 

Qij — fcmini 

where /cm;n at each frame are the indices, /c, which minimize £)^, so that the 

optimal state sequence can be retrieved. Back pointers from each state at frame 

i may be traced backwards until they converge to a common, globally optimal 

state at frame i — /, where It is the latency of the decision. In practice, this 

decision latency for the FO estimation problem is rarely greater than 100ms. 

Thus, it is feasible to implement FO estimators using this algorithm that can 

operate continuously, in real time, with modest delay. Finally, the FO estimate 

for the frame is 

ZL,%3 

where the values of j are those which result in the minimum value for D in the 

region of convergence. 
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1.3 Discussion 

Reasonable values for the constants in the algorithm may be determined using 

hill climbing techniques on a standard speech database where the FO and voicing 

state have been hand marked (or otherwise reliably determined, for instance 

using electro glottography). Fortunately, the performance of the algorithm is 

weakly sensitive to the exact parameter values once the general operating region 

has been found. 

This algorithm permits estimation of FO on a cycle-by-cycle basis, since t, 

the frame step size and u>, the correlation window size can both be set smaller 

than the expected fundamental period. This is in contrast to autocorrelation-

based approaches, where the autocorrelation window must be several glottal 

periods long. 

A variety of inter-frame spectral distance measures can serve as the basis for 

the "stationarity" measure Si. Secrest and Doddington suggest the use of LPC 

log area ratios [6]. Good results have been obtained with a stationarity measure 

defined as: 

5= 

1 (itakura(i - 1,i + 1) - 0.8)(0.05 + 

where i is the index of the current frame; rmsi is signal RMS in frame i\ and 

itakura(i,j) is the Itakura-Saito distortion measure [3] between frames i and j. 

The precision of the FO estimation can be considerably improved by parabolic 

interpolation of the CCF. If a parabola is fit to the three points comprising the 

peak in the CCF, the peak of the parabola is a good estimate of the "true" 

peak of the corresponding continuous CCF. Thus, instead of using the compu 

tationally expensive approach of increasing the rate at which the speech signal 

is sampled, one can apply interpolation on the few peaks in the CCF that are 

finally identified as FO period markers. 

It is important that DC and other very low frequency noise components be 

removed from the signal prior to application of the CCF. Otherwise, these can 

generate very high correlation values in unvoiced and "silent" regions of the 

signal, incorrectly encouraging a "voiced" decision. A high-pass filter with zero 

response at 0 Hz and a half-power corner frequency at 80 Hz has been found to 

be quite effective. 

The computational load of the dynamic programming (DP) can be reduced 

by limiting the number of candidates considered at each frame. The DP load 

grows as the square of the number of candidates (states) in each frame. Thus, 

instead of considering all local maxima in the CCF as period candidates, only 

the highest N need be considered, where N is on the order of 10-20. This 

significantly reduces the load in the unvoiced regions where there are many 

local maxima, none of which will ultimately contribute to a period estimation! 

The computational load of the CCF may be reduced by performing it in two 

stages. Note that for a given window duration and frame rate, the cost of com-
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puting (j) grows as the square of the speech sample rate. Thus, initial estimates 

of the CCF peak locations can be made on a sample-rate-reduced version of the 

speech signal. The peak locations can then be refined by recomputing the CCF 

at the higher sample rates only in the vicinity of the initial peak estimates and 

for only the most promising peaks. 

1.4 Figure Caption 

Figure 1 

Waveform (A), correllogram (B) and cross correlation functions (C, D, E) 

based on a female voice saying "Are any sub...". The cross correlation plots C, 

D and E, which were computed at .83 sec, .5 sec and .68 sec, respectively show 

correlation values as a function of correlation lag with zero lag at the extreme 

left in each plot. In C the "true" peak corresponding to FO is actually lower in 

amplitude than the peak at twice the true period. In D, the true peak is the 

highest non-zero lag peak. Note that the non-zero-lag peaks in the correlation 

function based on unvoiced speech, seen in E, are all considerably lower than 

the zero-lag peak. The correllogram, B, shows the correlation value plotted as 

a function of time (horizontal axis) and lag (vertical axis). Correlations close to 

one are shown in black; minus one in white. When the time context surrounding 

the problematic correlation function in E is taken into account by examining 

the correllogram in B, the correct peak choice is obvious. 
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Abstract 

Milenkovic (1987) describes a waveform model for the measurement of the 

aperiodicity of a voiced speech waveform. The model contains a periodic com 

ponent, which may vary in amplitude between pitch periods, and a periodicity 

error (also called the noise component), which has a constant mean-square 

value across pitch periods. Minimizing the mean-square of the periodicity error 

provides estimates of 1) pitch period (used to determine jitter), 2) amplitude 

variation of the periodic component (used to determine shimmer), and 3) mag 

nitude of the aperiodicity noise (used to determine voice SNR). 

This report describes how minimizing the periodicity error is equivalent to 

performing a rotation transformation on signal vectors from two adjoining pitch 

periods. This transformation is known as SVD in signal processing (Haykin, 

1991) and principal components analysis in statistics (Nash, 1979). This con 

nection gives a more numerically stable formula for computing the minimum 

mean-square error. It also provides a geometric interpretation of the periodic 

and noise components in relation to the signal vectors, proving the existence of 

the periodic and noise components in the form required by the model. 

1 Introduction 

The purpose of this report is to advocate adoption of minimum mean-square er 

ror (MSE) waveform matching as a standard for measuring voice aperiodicity. The 

commercially-available CSpeech software package incorporates a minimum MSE al 

gorithm for determining voice jitter, shimmer, and aperiodicity SNR as described 

by Milenkovic (1987). Elaboration on the derivation and rationale of this algorithm 

is warranted. This report also contains numerical recipes to facilitate incorporating 

minimum MSE into other software packages. 
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Minimum MSE is an improvement over determining jitter and shimmer by mea 

suring the time and amplitude displacement of a salient waveform peak (Horii, 1979). 

The time displacement of a zero crossing adjoining a salient peak provides a related 

way to measure jitter. Besides the difficulty of finding a consistent salient peak from 

one pitch period to the next, the salient peak measures are sensitive to additive noise 

in the recording process as well as aperiodicity noise intrinsic to the voice waveform. 

Performing a minimum MSE waveform match over an entire pulse, however, is a 

well-known method from radar and sonar engineering for counteracting this noise 

sensitivity. With voiced speech, this match can take place over an entire pitch period 

cycle. By employing a sliding pitch period-long analysis frame, it is not necessary to 

identify the salient peak. 

Minimum MSE is also an improvement over conventional approaches to measuring 

aperiodicity SNR. One method is to measure peaks and valleys of lines in a spectro 

gram (Muta, et a/, 1988). The other is to estimate a periodic component by averaging 

a large number of pitch periods and to measure the noise component as the difference 

between the speech waveform and the estimated periodic component (Yumoto, et a/., 

1982). The spectrogram measure requires at least four pitch periods, and the time-

domain method requires ten pitch periods. Both methods lump the effects of jitter, 

shimmer, and aperiodicity noise apart from jitter and shimmer into a generalized 

measure of noise. Performing a minimum MSE waveform match over one pitch pe 

riod cycle can reduce the number of pitch periods to two (one cycle matched with an 

adjoining cycle), and it can help separate the effects of jitter and shimmer from the 

noise measure. 

In employing a minimum MSE waveform match as a unified framework for mea 

suring jitter, shimmer, and aperiodicity SNR, there is some controversy over whether 

to adopt the seemingly peculiar procedure found in Milenkovic (1987) or to adopt a 

simpler waveform matching procedure. Such a simpler procedure calls s(t) the wave 

form in the current pitch period, sp(t) = s(t — tp) the waveform in the previous pitch 

period, and minimizes the error 

e(t) = s(t) - Ksp(t) (1) 

by adjusting amplitude factor K and pitch period tp (see Qi and Shipp, 1992 for a 

related method). 

The objection to the simpler procedure is how it works when both s(t) and sp(t) 

contain aperiodicity noise. The simpler procedure may work for radar where sp(t) 

is the noise-free outbound pulse and s(t) is the noisy pulse. When both s and sp 

contain noise, the simpler procedure will result in a complicated relation between the 

minimum mean-square value of e and the true magnitude of the noise contained in 

both s and sp. In addition, the relationship between K and waveform shimmer is 

complicated on account of the bias introduced by the noise. 
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The more complicated procedure has the advantage that it gives correctly scaled 

estimates of shimmer and aperiodicity noise if a particular waveform model holds 

true. This report also shows that the seemingly peculiar algorithm of Milenkovic 

performs a vector rotation and is therefore identical to the well-known procedure for 

singular value decomposition (SVD) (Haykin, 1991). SVD is also known as principal 

components analysis, which has extensive theoretical rationale (Nash, 1979). SVD 

leads to a geometrical interpretation of signal and noise components, which proves 

that the model has an exact least-squares instead of only an approximate least mean-

square solution as originally supposed. 

To widen the application of SVD-based waveform matching, this report purpose 

fully leaves open many other details of a voice analysis system. The initial pitch 

estimate is such a detail. The waveform matching procedure assumes a rough esti 

mate of the pitch period by other means, and varies tp to refine the estimate. Another 

open issue is the question of aligning the analysis frame on pitch epochs. The method 

of Milenkovic (1987) employs a sliding analysis frame. In a voice analysis system with 

a reliable means of determining the glottal epoch, the methods described in this report 

are also applicable to an analysis frame that is aligned on that epoch. 

2 Methods 

This section of the report 1) describes a waveform periodicity model and reviews the 

minimum MSE estimate of the model parameters, 2) shows how this model can be 

reexpressed as a rotation transformation applied to a pair of signal vectors and how 

the minimum MSE solution can be expressed as the calculation of the optimal rotation 

that performs SVD, and 3) summarizes this result in the form a numerically-stable 

recipe for calculation. 

2.1 Periodicity model 

The waveform s(t) is the speech signal and sp(t) = s(t - tp) is the signal from one 

pitch period before. The quantity tp is the estimated pitch period, and tp can be 

adjusted for a best waveform match between pitch periods. A model of waveform 

periodicity separates s(t) into a periodic component p(t) and a periodicity error (or 

noise component) e(t) according to 

s(t) = p(t) + e(t), (2) 

sp(t) = p(t-tp) + e(t-tp). (3) 
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Furthermore, because the periodic component can vary in amplitude between pitch 

periods according to p(t) = Kp(t — ip), 

s(t) = Kp(t-tp) + e(t), (4) 

tp) + ePit), (5) 

where ep(t) = e(t — tp). 

This model is unusual in that the periodic component can have an amplitude 

modulation if, but then again amplitude modulation is known to be present in speech. 

If the analysis frame is aligned on a particular glottal epoch, a value of K gets 

calculated for that alignment. In a sliding analysis frame is used, a new K gets 

calculated for each updated position. 

The waveform matching procedure requires forming vectors of samples 

s = [s({no-np + l}T),...,s(noT)}, (6) 

(7) 

where T is the interval between waveform samples, n0 is the integer index controlling 

position of the analysis frame, and np is the number of samples in a pitch period-long 

frame. In a similar manner, vectors e and ep contain samples of the periodicity error 

signals e(t) and ep(t). The vectors s and sp have actual numerical values. The vectors 

e and ep are only theoretical constructs in the model, but we can estimate their vector 

magnitudes from observations of s and sp. 

In the formula s — ifsp, the periodic component p (vector of samples of p(t — tp)) 

simply cancels out, resulting in 

e - Kep = s - Ksp. (8) 

Next, assume that e and ep are of equal vector magnitude according to E = eeT = 

epej and that they are orthogonal according to ee£ = 0; this is a statement of 

statistical independence of the noise components in each pitch period. The symbol T 

denotes vector transpose and eeT = ||e||2 denotes the Cartesian dot product formula 

for the vector norm square. That e and ep are orthogonal and equal norm permits 

equating 

|2 = (1 + K2)E. (9) 

That the periodic-part cancels out permits equating 

|2 (10) 

= ssT - 2Kssl + K\sTp. 
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Combining these expressions, 

E = t-^(*sT ~ ™**l + K\sTp). (11) 

We estimate K and tp and derive noise estimate E by adjusting K and tp to 

minimize E. The reason to call this minimum MSE (as opposed to least squares) is 

the absence of proof that the vectors p, e, and ep exist for every given signal vectors 

s and sp. Assuming e(t) and ep(t) to be independent equal mean-square random 

processes, and that minimizing E gives an estimate of the minimum MSE, these 

assumptions provide a weaker criterion for existence of the model. This report will 

show that the error vectors indeed exist, and that minimizing E gives least-squares 

error vectors. Even though we cannot uniquely specifiy the error vectors themselves, 

we can determine their least-squares magnitudes. 

The estimation procedure requires stepping through values of tp, and finding the 

optimal K for each tp. In Milenkovic (1987), the procedure is to step through values 

of tp that are an integer number of sample intervals T, and to employ parabolic 

interpolation on the optimal E to find the best tp between sample positions. An 

alternative is to generate vector sp for the "between" values of tp by interpolating 

samples of s(t). In either case, we determine the optimal K for a given tp by evaluating 

8E_ 

OK ~~ (1 -

Defining 

q = ssT-spsJ, (13) 

r = ssj, (14) 

leads to the quadratic 

K2 - q-K - 1 = 0, (15) 
r 

with solution 

K = R±y/W+l, R = 7T- (16) 
It 

We take the + branch of ± because that gives a positive value of K, the usual situation 

with a voiced speech waveform. 

This concludes the review of Milenkovic (1987). Next, this solution is reexpressed 

as a rotation transformation. 
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2.2 Rotation transformation and SVD 

The rotated error vector er is defined as 

-1 
e,. = =(e - Kep) = -se + cep 

for s = sin0 and c = cos 0, where 0 is an angle of rotation, and 

1 K 
s = c = 

(17) 

(18) 

where c2 + s2 = 1, the necessary and sufficient condition for s and c to be the sine 

and cosine of an angle. It also follows that 

Cancelation of the periodic component p permits equating 

er = -ss + csp. (20) 

We then estimate s and c by minimizing ||er||2 subject to the constraint that c2 + s2 = 

1. This is done by simply expressing s and c in terms of the earlier solution for K. 

Computing s and c in this manner is identical to determining a two-element prin 

cipal components analysis. It turns out that expressing s and c in terms of K results 

in the mathematical formula stated by Nash (1979) for principal components analysis. 

Expanding 

c2 = 
K2 

K2 2(1 + R2 + Ry/TTB2) 2V1 + + R) 

2VT+B2 ' 

and remembering that R = ̂ , it follows from y/1 + R2 = ̂ y/Ar2 + q2 that 

2 K2 y/ir2 + q2 + q __ v + q 

C = 1 + K2 = 2y/4r2 + q2 " " 2v ' 

(21) 

(22) 

where v = y/Ar2 + q2. 

Taking the positive branch of the square root and setting 

c == (23) 



the condition c2 + s2 = 1 requires 

s = ±1 

= ± 

\ 

vc 

(24) 

where we take the branch of the square root having the same sign as r. This insures 

the correct result when signal crosscorrelation r < 0, a rare occurence with voiced 

speech that we need to account for anyway. 

2.3 Numerical recipe 

The numerical algorithm for computing s and c is summarized as follows. Compute 

= ssj\ 

= ssT-spsJ, 

v = + q2. 

(25) 

(26) 

(27) 

The coefficient r is the crosscorrelation between the two pitch periods while q is the 

signal energy difference between pitch periods. 

If q ^ 0, the condition where the signal energy is greater than in the previous 

pitch period, compute 

c = (28) 

If q < 0, the condition where the signal energy is less than in the previous pitch 

period, compute 

s = SGN(r) c = 

vs 

(29) 

where SGN(r) = 1 for r > 0 (the usual case), = —1 for r < 0. 

The reason for splitting up the solution this way is that it insures computing v + q 

when q > 0 (adding two positive numbers) and computing v — q when q < 0 (still 

adding two positive numbers). This avoids the numerical instability resulting from 

subtracting two (possibly nearly equal) positive numbers. 

The formula for E can be reexpressed as 

MIL 1-7 

E = s2ss . (30) 



MIL 1-8 

In the special case of equal amplitude pitch periods, ssT = spsj and c = s = l/v2, 

and the expression simplifies to 

E = ssi - ss;. (31) 

3 Results 

Expressing the minimum MSE solution in terms of principal components analysis 

leads to a geometric construction. This construction 1) proves the existence of the 

periodic and noise components, 2) expresses the periodic and noise components in 

terms of the principal components, and 3) leads to a formal definition of SNR (signal-

to-noise ratio) and HNR (harmonics-to-noise ratio). 

The principal components are formulated as 

(32) 

The subscript r reminds us that the matrix is a unitary rotation matrix. According 

to the theory of principal components, when c and s satisfy c2 + s2 = 1 and ||er||2 a 

minimum, sr and er are orthogonal principal components. The vectors s, sp, sr, and 

er all lie on an ellipse with sr, and er marking the major and minor axes. 

The existence of the periodicity model is proved by geometric construction. We 

express the major principle component as 

sr = pr (33) 

where pr and e^ are mutually orthogonal vectors selected from the subspace of vectors 

orthogonal to er and where ||e^-||2 = ||er||2. Breaking the major principle component 

down in this way is possible because ||sr||2 > ||er||2 by virtue of which component is 

major (the bigger one) and minor (the smaller one). The magnitudes of pr and e^-

are uniquely determined (note that ||pr||2 = ||sr||2-||e^-||2 = ||sr||2-||er||2 on account 

of orthogonality and equality of norms), but the vectors pr and e^ are not unique. 

That is OK, because we are only interested in the magnitudes for SNR calculations 

and do not need to recover the actual vectors. 

The original vectors are recovered from the principal components according to 

(34) 
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When the rotation matrix is applied to orthogonal vectors of equal magnitude, the 

rotation ellipse becomes a circle, and the rotated vectors remain orthogonal with the 

same magnitude. This allows us to express periodicity error and periodic components 

of the waveform in terms of principal components. The periodicity error vectors e 

and ep are orthogonal, equal-magnitude, and rotated versions of minor principal com 

ponent er and geometrically constructed vector e^r. The major principal component 

sr is the sum of the two constructed vectors pr and e^-, and the periodic components 

are given by p = spr and Kp = cpr for K = c/s. 

This geometric construction is taking two principle components and generating 

three vectors: the periodic component (its version scaled by K counts as the same 

vector) and two independent periodicity error components. As a result of this two-

to-three mapping, the construction is not unique, but it exists, the minimum norm 

of the minor principal component makes the periodicity error components minimum 

norm, the three vector elements of the periodicity model exist, and the norms (vector 

magnitudes) are unique. 

The proposed definition of periodicity SNR is the average of the energy in the 

signal for each pitch period divided by the energy in the periodicity error: 

SNR = I'|S||2 + I|S 
2 er 2 

|er||2 2 ||er| 

(35) 

The proposed definition of periodicity harmonics-to-noise ratio (HNR) is the av 

erage of the energy in the periodic component for each pitch period divided by the 

energy in the periodicity error: 

HNR = 
2 ||erp 2 

|Br||2-||er|la 

2 IN|2 

I (]M£ - l) (36) 
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4 Conclusions 

The waveform matching method of Milenkovic is identical to performing principal 

components analysis on a pair of signal vectors taken from two adjoining pitch periods. 

This interpretation provides 1) a numerically stable formula for computation, 2) an 

interpretation of a voice periodicity model in terms of the principal components, 3) 

a proof that the method is least squares, 4) a proposed definition for SNR and HNR 

derived from analysis of two adjoining pitch periods. The proposed definitions and 

numerical algorithms are applicable to either a sliding analysis frame or an analysis 

frame aligned with glottal epoch markers. 
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ABSTRACT 

An acoustic model of pathological voice production is presented It describes the non-linear 

effects occurring in the acoustic waveform of disordered voices. The noise components such as 

fundamental frequency and amplitude irregularities and variations, sub-harmonic components, 

turbulent noise and voice breaks are formally expressed as a result of random time function 

influences on the excitation function and the glottal filter. 

A method for quantitative evaluation of these random functions is described. The method 

computes some their statistical characteristics which can be useful in assessing voice in clinical 

practice. More than 33 acoustic parameters are computed, such as: average fundamental 

frequency, phonatory frequency range, several frequency and amplitude short- ami long-term 

perturbation and variation measures, noise-to-harmonic ratio, voice turbulence and soft phonation 

indexes, quantitative measures of voice breaks, sub-harmonic components and vocal tremors. This 

set of parameters, which corresponds to the model, allows a multi-dimensional voice quality 

assessment. A computer system based on above model and method was developed for the CSL 

model 4300 (Kay Elemetrics Corp.). A group of 68 people with normal and disordered voices 

was analyzed using the system in order to define normative values for the acoustic voice 

parameters. 

The file format for voice data used by Kay Elemetrics Corp. is described This format, which is 

very similar to a multi-media format supported by Microsoft, allows to keep all the information 

and associated data in a single file. 

l.INTRODUCTION 

The classic way to describe the acoustics of human speech is by using the Linear Model of Speech 

Production [1, 2], where the voice signal is presented as a result of a periodic impulse sequence 

(excitation) filtered by the glottis, the vocal tract and the lips. 

However, the real voice contains irregular components which are (probably) due to the chaotic 

nature of the laryngeal mechanism [3]. A voice without irregularity is not perceived as human 
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which is why the advanced speech synthesizers, based on the Hnear model, introduce some pitch 
irregularity [4,14]. 

^ACOUSTIC MODEL OF THE PATHOLOGICAL VOICE PRODUCTION 

Voice pathology can cause increased noise components in the voice signal such as: fundamental 
frequency and amplitude irregularities and variations with different patterns, sub-harmonic 
frequency components, turbulent noise, voice breaks and tremors [2. .5-8]. Understanding the 
acoustics of these changes is the key to the development of methods for the evaluation of 
pathologic voices. A formal expression of these changes is given by the Extended Acoustic Model 
of the Pathological Voice Production [9] on Rg.1. 

feedbacks 

excitation glottis (ooca! folds) 
vocal tract 

Fig.1:Extended Information Model of the Pathological Voice Production. 

The discrete-time formal representation of the model describes the excitation function 

e\n) = a(/i)f] fy -\mTo+ 

as a modulated impulse sequence, where the frequency modulating (FM) function q>(n) and the 

amplitude modulating (AM) function a(n) are random time functions; n=0,/...oo is discrete time 

(samples); To is the period of the sequence (samples); Sfn) is a Kronecker delta function 

O)=l, 5(nO)=O)\ and the carrier sequence is 

«=0 
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The glottal volume velocity function 

u(n) + w(n),// fl(n) £ i4c onrf p(#t) £ 

w(n),in remaining cases 

is a result of filtering of the excitation e'(n) by the glottal filter, where 

= e'(n)*g(n) = fv («)*(»-m); 

ic* 200/r/sec; 

The White Noise Generator (WNG) adds components w(n) which model the turbulent 

components and the Voice Break Switch (VBS) describes the interruptions of the voice 

generation, where: g(n) is the impulse response of the glottal filter, Go- scale factor, T- sampling 

period (sec.), Ac and ¥fc- amplitude and frequency break thresholds, cl and c2- comparators. The 

convolution of u'(n), the impulse response of the vocal tract filter v(n) and the impulse response of 

the lip-radiation filter l(n) results into the modeled voice signal 

where v(n) and l(n) are considered invariable because it is assumed that the laryngeal pathology 

does not affect the vocal tract and the lips. 

All a(n), <p(n) and w(n) are random time functions. Therefore the task of acoustic evaluation of 

pathological voices can be regarded as the extraction of specific statistical parameters of these 

functions which have clinical significance. The method described below includes three separate 

parts: pitch extraction (demodulation), noise evaluation and long-term components (tremor) 

analysis. 

3.PITCH EXTRACTION 

The amplitude and frequency demodulation curves of the voice signal contain information about 

the time-domain behavior of a(n) and tfh/ The period-to-period pitch extraction [10] is the 

classic type of demodulation used for evaluation of voice pathology [7, 8]. However the 

irregularity of the disordered voice makes the pitch extraction inaccurate, often impossible. 

In order to provide reliable data an adaptive time-domain pitch-synchronous method for pitch 

extraction was developed. It consists of the following main steps: fundamental frequency (Fo) 

estimation, Fo verification, period-to-period Fo-extraction and computation of time-domain voice 

parameters. 

The Fo-estimation provides preliminary information about the pitch. It is based on short-term 

autocorrelation analysis with non-linear sgn-coding [11] of the voice signal x(n) 
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Short and long-term amplitude perturbation functions: Shimmer in dB ShdB /dB/ [13], 

Shimmer Percent Shim /%/ [13], Amplitude Perturbation Quotient APQ /%/ [8], Smoothed 

Amplitude Perturbation Quotient sAPQ /%/ and Peak-to-Peak Amplitude Coefficient of 

Variation vAm /%/ [5]. 

Voice break related measurements: Degree of Voice Breaks DVB /%/ [15] - the ratio of the 

total length of areas representing voice breaks to the time of the complete voiced sample; and 

Number of Voice Breaks NVB. The criteria for voice break area can be a missing impulse for the 

current period or an extreme irregularity of the pitch period. 

Sub-harmonic components related measurements: Degree of sub-harmonics DSH /%/- the 

ratio of the number of autocorrelation windows with incorrect sub-harmonic period classification 

to the total number of autocorrelation windows; and Number of Sub-Harmonic Segments NSH 

Voice irregularity related measurements: Degree of Irregular Vocalization DUVPAJ [IS]- the 

ratio of the number of autocorrelation windows classified as unvoiced to the total number of 

autocorrelation windows; and Number of Unvoiced Segments NUV. 

4.NOISE EVALUATION 

The analysis of the voice signal in the frequency domain provides another approach to the 

evaluation of its irregularity (noise). The amount of in-harmonic spectral components correlates to 

the perception of hoarseness of the pathological voice [16]. To evaluate the level of noise 

components and separate the turbulent noise correlating to the intensity of the function w(n), a 

pitch-synchronous frequency-domain method was developed. The following parameters are 

extracted: Noise to Harmonic Ratio NHR- a general evaluation of the noise presence in the 

analyzed signal (including amplitude and frequency variations, turbulence noise, sub-harmonic 

components and/or voice breaks); Voice Turbulence Index VT1- mostly correlating with the 

turbulence components caused by incomplete or loose adduction of the vocal folds; and Soft 

Phonation Index SPI- an evaluation of the poorness of high-frequency harmonic components that 

may be an indication of loosely adducted vocal folds during phonation. 

The algorithm consists of the following general procedures: 

1. Election of two groups of windows of 81.92 ms (4096 points) of the voice signal. The first 

group includes a sequence of windows of the voiced areas in the analyzed signal with a half 

window overlap. The second group includes four non-contiguous windows, where the 

frequency and amplitude perturbations are the lowest for the signal. 

2. For every window in both groups the following steps apply: low-pass filtering (cutoff 6000Hz, 

order 22, Hamming window), downsampling to 12.5kHz and conversion of the real signal into 

analytical one using Hilbert filtering; computation of the power spectrum of the window using a 

1024-points Complex Fast Fourier Transform (FFT) on the analytical signal; calculation of the 

average fundamental frequency within the current window from the time-domain analysis data 

and synchronous harmonic/in-harmonic separation; computation of the current window's NHR, 

SPI and VTI. NHR is a ratio of the in-harmonic energy in the range 1500-4500Hz to the 
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harmonic spectral energy (70-4500 Hz) and S/V is a ratio of the lower-frequency (70-1600Hz) 

to the higher-frequency (1600-4S00Hz) harmonic energy for the first group of windows. VT1 is 

a ratio of the spectral in-harmonic high-frequency energy (280O-580OHz) to the spectral 
harmonic energy (70-4500Hz) for the second group of windows. 

3. Computation of the average values of NHR, SPI and Ml 

5.TREMOR ANALYSIS 

The pitch extraction process yields the amplitude and frequency demodulation curves of the voice 

signal. These curves contain information about the long-term amplitude and frequency variability 
(tremor) of the voice signal [17]. Methods for frequency and amplitude tremor analysis are 

developed. The algorithm for frequency tremor analysis includes the following steps: 

1. Division of the Fa-data resulting from pitch extraction into windows of 2 sec. length with 1 
sec. step overlap. 

2. Application of the following procedures to every window: low-pass filtering of the Fo~ data 

(cutoff 30Hz) and downsampling to 400Hz; calculation of the total energy of the resulting 

signals; subtraction of the DC-component and computation of the autocorrelation function on 

the residual signal; division of the autocorrelation data by the total energy and accumulation of 

the results from every window. The maxima of the resulting autocorrelation curve show the 

intensity and frequency of the long-term (up to 30Hz) frequency-modulating components. 

3. Calculation of the Fo-Tremar Intensity Index FTR1 /%/- the value of the global maximum of 

the average autocorrelation curve and the corresponding position Fo-Tremar Frequency Fftr 
/Hz/ 

The same method applies for computation of the Amplitude Tremor Intensity Index A TRI /%/ and 

the Amplitude-Tremor Frequency Fatr /Hz/ from the peak-to-peak amplitude data resulting from 

pitch extraction. 

6.APPLICATION 

Based on the model and the methods described above a Multi-Dimensional Voice Program 

MDVP was developed utilizing the Computerized Speech Lab (CSL) model 4300 (Kay Elemetrics 

Corp.). CSL, a hardware/software system which uses an MS-DOS based computer as host, 

includes signal conditioning, 16-bit A/D converters, dual digital signal processors (DSP16A & 

TMS32025) and support peripherals. The MDVP system computes a set of 33 acoustic voice 

parameters in about 16 seconds and provides flexible routines for graphical representation of the 

results[Rg.2-3]. Also a user-upgradable voice database allows automatic comparison of the 

current results with different nosological groups. 
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peak-to-peak amplitude (C), Fo-tremor (D) and amplitude tremor (E) autocorrelation curves, long-

term average linear spectrum of the voiced areas of the signal (F) and histogram of the 

distribution of Fo (G). 
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In order to extract the normative threshold values of the acoustic parameters sustained phonation 

of the vowel 'a' of 15 persons (7m,8f) with normal voice production and of 53 patients (25m,28f) 

with laryngeal diseases were analyzed using the MDVP system. The following nosological groups 

were included in the study: laryngeal cancer, benign neoplasms, chronic laryngitis, functional 

dysphonia and paralysis of a recurrent nerve. The computed normative threshold values for this 
database are; 

Amplitude perturbation measurements: 

ShdB Shim I APO sAPO(55n) vAm 

0.35 dB 3.81 % 3.07 % 4.23 % 8 20% 

Noise ami tremor evaluation measurements: 

The normative values may vary depending on the nosologicai groups included in the specific 

study. A separate database is recommended to be selected or created for different applications. 

7.F1LE FORMAT 

The format of sampled data files used by Kay Elemetrics Corp. was developed to meet the 

requirement for a single file that would contain any information that may be associated with a 

piece of sampled data and could be expanded to include additional features as those were 

incorporated into the program without rendering previous data files obsolete. A angle file is 

advantageous because it keeps all information about a recording in one file. Separate files to 

describe a recording can be confusing and inadvertently separated. This file format is very flexible 

and is designed to be changeable to accommodate future requirements. Under exploration, for 

example, is the inclusion of videostroboscopic images with the file so that acoustic and images of 

the vocal cords can be viewed in synchronization with spectrograms and waveform displays. This 

new capability, unforeseen when the CSL was first developed, can be accommodated with the 

CSL file format without rendering previous data files obsolete. 

Additionally, it was necessary that the format could be readily identified by any program 

attempting to read the file to determine that the file was, in fact, an appropriate sampled data file. 
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Toward these ends, a format made up of a number of nested named data BLOCKS was 

developed. The specification may be expanded by defining additional BLOCK types to 

accommodate new features and identifiability is provided since the name and placement of each 

BLOCK is specified for the file format and may be quickly checked as the file is read. This means, 

among other things, that it is not necessary to spedfy a particular filename extension in order to 

identify the file type to a program so that the extension may be put to bettor use as a classification 

aid for the user if desired. 

A sampled data file which conforms to this specification contains the string "FORM" as the first 4 

characters in the file (the FILE TITLE), followed by a BLOCK containing all data for the file. 

The BLOCK following the FILE TITLE may (and most certainly wUl) contain one or more nested 

BLOCKS. An example of Kay Elemetrics data file structure is shown of Fig.4. 

Fig.4: Kay Elemetrics Data File Structure Example. 
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Currently Kay's NSP data file format used in CSL can accommodate the following information: 

creation date, time and title, sampling rate, signal length, signal levels for each channel, sampled 

data from up to four channels, IP A phonetic transcription, named tags and voiced impulse 

markers for each channel, palatometric data and a comment field. Under concideraration is the 

inclusion of synchronous vtdeostroboscopic images, signals associated with swallowing, patient's 

case history data, clinical evaluation and acoustic analysis results. Also the format is intended to 
accommodate several channels of data with different sampling rates. 

The NSP format is very similar and easily convertible to RIF format, which is supported by 

Microsoft as a multi-media format. The products from the CSL-family support also input and 

output to several other file formats as TIM1T, US, DAT-tape, binary without header and flexible 

generic binary formats with header set by the user. 
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Abstract 

Current methods of computing amplitude perturbation of voice depend upon being 
able to accurately determine fundamental period. In this paper, we describe two 
methods of estimating amplitude perturbation of voice which do not depend on being 
able to accurately determine the boundaries of fundamental periods. In both of these 
methods, amplitude perturbation is computed as the variance of an ensemble of pe 
riods after these periods have been aligned in time. In one method, time alignment 
is accomplished using zero-phase transformation. In the second method, an uncon 
strained dynamic programming procedure is used. Accuracy of estimating amplitude 
perturbation by these two methods is evaluated with synthetic and natural voice sig 
nals and » also compared with estimation using zero-padding based time alignment. 
I he unconstrained dynamic programming method is shown to provide accurate esti 
mation of voice amplitude perturbation over a variety of signal conditions 
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I. Introduction 

Laryngeal diseases and disorders may cause disturbances in the voice signal. One 

significant disturbance is the presence of noise (Horii, 1980; Yumoto et al., 1982; 

Hillenbrand, 1987). The level of noise present in human voice often is difficult to 

quantify, in part, because the voice signal is complex and quasi-periodic (Kasuyact alM 

1986; Muta et al., 1988; Qi, 1992). Because of the complex, quasi-periodic nature 

of human voice, many well-defined concepts in signal processing may not be directly 

applicable to the analysis of human voice signals. For example, the fundamental 

frequency of a periodic signal, f(t) = f(t + nT), n € I, is defined as f In theory, 

this definition cannot be applied to human voice signals because these signals arc not 

truly periodic. Similar problems exist for the amplitude of voice signals as well. For 

example, it is known that the amplitude of a sinusoid refers to the maximum positive 

or negative excursion of the sinusoid from zero. The amplitude of a complex, periodic 

signal often refers to the amplitude of each sinusoidal component of the complex 

signal (Oppenheim and Schafer, 1989). The amplitude of a complex, quasi-periodic 

voice signal is not well identified. In this paper, tve used the term fundamental 

period to refer to the duration between acoustic events that correspond to one cycle 

of vocal fold or voice source vibration. Fundamental frequency (fO) is the inverse of 

the fundamental period. The term amplitude is used to refer to the value of the voice 

signal at any instant in time. Amplitude perturbation refers to the total random 

variation in amplitude within one fundamental period. 

The level of amplitude perturbation can be computed relatively easily as the 

ensemble variance of several periods, when all periods have the same length (Papoulis, 

1984). The periods of human voices do not have the same length. Time-normalization 

of periods is necessary to compute the ensemble variance of voice signals. One method 

of time normalization is zero-padding in which zeroes arc added to every short period. 
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Zero-padding can be used when the level of fO perturbation is relatively small (Yumoto 

et al., 1982). When the perturbation in fundamental frequency is relatively large, for 

example, in pathological voices, the zero-padding normalization method should be 

used because the computed variance in amplitude will be significantly inflated by fO 

perturbation. By way of example, two periods of a voice signal are shown in Figure la 

and their difference is shown in Figure lb. As can be seen, the amplitude differences 

between these two periods are primarily due to the difference in temporal structure 

of the signals. If one period is compressed or stretched, the amplitude perturbation 

or difference between the two periods is negligible (sec Figures lc and Id). 

One of us has recently suggested that voice amplitude perturbation should be esti 

mated as the ensemble variance in amplitude after all periods are optimally aligned in 

time (Qi, 1992). In this earlier work, optimal time-alignment of fundamental periods 

was accomplished using an end-point-constrained, dynamic programming procedure, 

in which the end-points of each period were aligned first, i.e., prior to optimal time 

alignment of every point within a period. This method of estimating amplitude 

perturbation was shown to be highly accurate even when relatively large fO pertur 

bations were added to voice signals. An assumption underlying this method of time-

normalization is that the boundaries of each fundamental period can be determined 

accurately. 

More recently, we have been conducting research to define acoustic properties of 

voices characterized by the presence of larger than normal levels of perturbations. To 

accomplish this work, we sought to develop methods of estimating amplitude pertur 

bation which do not depend upon being able to accurately determine the boundaries 

of fundamental periods. Two such methods arc described and evaluated in this paper. 

In both of these methods amplitude perturbation is computed as the variance of an 

ensemble of periods following time-normalization of these periods. In one method, 

time-normalization is accomplished using zero-phase transformation. In the second 
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method, an unconstrained dynamic programming procedure is used to time-norrnalizc 

signals (Rabiner et al., 1978). 

II. Methods of Time Normalization 

Time-normalization is used in the computation of amplitude perturbation to min 

imize error due to temporal mis-alignment of individual periods. Two major sources 

of temporal mis-alignment are the time-aliasing effect among periods and errors in 

period boundary determination (PDD). Time-aliasing refers to the influence, due to 

the infinite impulse response of the vocal-tract, of previous periods on the period un 

der analysis (Oppenheim and Schafer, 19S9; Verhclst, 1991). When all periods have 

the same length, the influence of previous periods is constant and would not alter 

the temporal structure of each period. When ft) perturbation exists, the influence 

of previous periods varies on a period-by-period basis, resulting in the imposition of 

variations in the temporal structure on each period. Errors in PDD also produce 

alterations in the temporal structure of each period. 

A. Zero-Phase Transformation 

One approach to minimizing the effects of time mis-alignment on the estimation 

of amplitude perturbation is to remove all phase-related information for each funda 

mental period. This can be accomplished using zero-phase transformation. A four 

step computational approach is used to accomplish zero-phase transformation: 

• Identify approximately period boundaries of a voice segment. 

• Compute period-synchronized, zero-padded Fast Fourier Transformation (FFT) 

for each period. 
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• Compute the magnitude spectrum and set the phase of each frequency compo 

nent to zero. 

• Inversely transform the zero-phased magnitude spectrum. 

Because phase-related information is removed in zero-phase transformation, all 

frequency components of each fundamental period arc aligned in time prior to the 

computation of amplitude perturbation. Sample synthetic signals before and after 

zero-phase transformation arc shown in Figure 2 to illustrate that time-misalignment 

between signals can be removed by this process. 

Upon first consideration, it might appear that zero-phase transformation is es 

sentially a frequency-domain approach to the estimation of amplitude perturbation. 

This initial view suggests that the inverse transformation may not be necessary, i.e., 

the magnitude spectrum could be used directly to estimate amplitude perturbation. 

However, the durations of individual periods are not equal in human voice and the 

harmonic frequencies of the discrete magnitude spectrum would be expected to vary 

from period-to-period. This variation makes it difficult to use the magnitude spectrum 

directly for the estimation of amplitude perturbation. The inverse Fourier transform 

brings each period back in the time domain with the same length and the resulting 

computation of ensemble variance of the inversely transformed signals is simple and 

straightforward. 

A potential drawback of the zero-phase transformation method is the numerical 

implementation of the Fourier transform. The FFT algorithm always assumes that the 

signal segment under analysis is periodic (Oppcnhcim and Schafer, 1989). With this 

assumption, random errors in PBD will not simply be shifts in the time origin. Rather, 

errors in PBD will produce changes in the cyclic pattern of the signal and degrade a 

period-synchronized FFT into a period-asynchronized FFT. It is well recognized that 

period-synchronized FFT provides more accurate spectral estimation of voice signals 
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than does period-asynchronized FFT (Kay, 1987). 

B. Unconstrained Dynamic Programming 

A second approach to minimizing the effect of time mis-alignment of periods on the 

estimation of amplitude perturbation is dynamic programming (DP) procedures. Dy 

namic programming optimally minimizes the differences between signals that arc due 

to temporal mis-alignment (Nemhauser, 1966). Optimal implies that there will not 

be another temporal alignment that can produce a smaller difference between signals 

under a given set of conditions. The conditions of DP are often stated heuristicdly 

to facilitate the optimization process. For example, in a constrained DP approach, 

the end-points of signals cannot be shifted in time. In an unconstrained DP approach 

any points can be shifted in time to achieve optimal match between signals (Parsons, 

1987). We felt the unconstrained DP approach should offer advantages for evaluating 

amplitude perturbation in voices, particularly when period boundaries are difficult to 

determine. 

The algorithm for unconstrained DP (Brown and Rabincr, 1932) is similar to that 

for constrained DP (Qi, 1992), except for the processing of starting and ending points 

of each period. The process of time-normalization can be viewed as the search for 

an optimal matching path through the lattice of points (see Figure 3). The specific 

algorithm used in this work is briefly summarized below: 

1. At the ith step in the horizontal direction, the lower limit and the upper 

limit for searching in the vertical direction were given by max(l,^ - 6) and 

mm(W, ̂  + 6), respectively. These searching boundaries defined a polygon, 

shown in Figure 3. 

2. Within these searching limits, the path for connecting each point (i,j) to pre 

vious points in the lattice was determined by minimizing the total cost (rms 



Qi-7 

differences) for reaching the current position. Specifically, 

(a) Starting with all points on the searching border (i = IV; and ; = IVi). Be 

cause there were no predecessors, the squared difference between samples 

on these points was computed as the starting cost. 

(b) Looping through all (i,j). In cadi loop, the costs from the current point 

(ij) to the predecessors (t-l,j), (»',;-1), and (i_l, j_l) were computed. 

The connection between point (»,;) and one of its predecessors was made 

such that the cost for making the connection plus the cost for reaching the 

particular predecessor was minimized. This minimum cost was stored as 

the cost for reaching point (t,j). 

(c) When i = MJ = N, the search was terminated and a complete path could 

be retrieved from the point with minimum total cost on the ending border 

of the searching limits (i = M,N-6<j < N and; = N,M-6 < i < M). 

3. The final amplitude difference between any two periods was equal to the mini 

mum total cost on the ending border of the searching limits. 

An example search is illustrated in Figure 3. 

HI. Experimental Procedures 

To evaluate the use of time-normalization in the estimation of amplitude pertur 

bation, the signal-to-noise ratios (SNRs) of synthetic and natural voices was com 

puted The SNRs of three time-normalization methods — zero-padding (ZP), zero-

phase transformation (ZPT), and unconstrained dynamic-programming (UDP) — 

were computed. SNR was defined as the ratio between the signal energy of the most 

representative period within a voice segment and the residue ensemble variance of all 
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other periods under analysis following time-normalization. The most representative 

period was the mean of the period ensemble when ZP or ZPT was used. The most 

representative period for UDP was the period with the minimum total rms distance 

to all other periods. The ensemble mean is not available when UDP is used for 

time-normalization (Qi, 1992). 

A. Synthetic Voice Evaluation 

The vowel /a/ was synthesized with a formant synthesizer. The synthesizer was 

a 5-pole, autoregressive digital filter whose coefficients were determined by 5 given 

pairs of formant frequencies and bandwidths (Rabincr and Schafcr, 1978). The unper 

turbed excitation source to the synthesizer was an equally-spaced impulse train. The 

amplitude of the impulse was set to 1000. Controlled perturbations were superim 

posed on the impulse train and the synthesis was made by convolving the perturbed 

excitation source with the impulse response of the autoregressive filter. The sampling 

frequency of the synthesizer was 16 kHz. Twenty periods were synthesized for each 

SNR computation. 

Amplitude perturbation was introduced by adding a zero-mean, Gaussian random 

noise to the impulse train. The level of the noise was controlled by the standard devi 

ation of the Gaussian distribution, given as the percentage of the impulse amplitude. 

Fundamental frequency perturbation was introduced by adding a zero-mean, uni 

formly distributed random number to each period of the impulse train. The level of 

/o perturbation was controlled by the standard deviation of the random number gen 

erator, given as the percentage of the average period. Error in period determination 

was introduced by adding another zero-mean, uniformly distributed random number 

to the known location of each impulse after the vowel had been synthesized. The 

level of the error was controlled by the maximum of the random number generator, 

given in number of samples. 
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The effect of amplitude perturbation, fO perturbation, and PBD error on SNR 

was determined by systematically varying the perturbation of one parameter, while 

holding the other parameters constant. To determine the effect of amplitude per 

turbation, the average /0 (at 120 Hz and 220 Hz, respectively) and the degree of 

/o perturbation (5%) were held constant. The standard deviation of the Gaussian 

random noise was increased from 1% to 25% of the impulse amplitude (1000) in incre 

mental steps of 5%. To determine the effect of fundamental frequency perturbation, 

the standard deviation of noise was held constant (5%). The standard deviation of 

fO was increased from 1% to 25% of the fundamental period in incremental steps of 

5%. To determine the effect of period boundary determination, the standard devia 

tion of fO perturbation was set to 1%, 5%, and 10% of the fundamental period, and 

the standard deviation of the noise generator was set to 1%, 5%, and 10% of the 

impulse amplitude, respectively. The maximum of the random number generator for 

producing PBD error was varied from 0 sample to 10 sample in incremental steps of 

1 sample. 

B. Natural Voice Evaluation 

Natural voices were used to further evaluate SNR estimation. The natural voices 

were used only to determined the effect of PBD errors on the computed SNRs. The 

levels of amplitude and fO perturbations are not controllable in such samples. 

Sixteen, non-smoking, healthy adults (8 men and 8 women) provided voice sam 

ples. Each subject produced a sustained /a/ at a constant, comfortable intensity 

level for a duration of more than 1 second. The microphone (ASTATIC, CTM-80) 

was placed about 10 cm in front of the subject's mouth. A pistonphone (GENRAD, 

Minical-1987) was used to record a calibration tone prior to each recording session, 

and all recordings were made in a quiet room. The recorded productions were digi 

tized into a computer (SUN, SparclO/30) at a sampling frequency of 16 kHz and a 

8 
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quantization level of 16 bits. The signal was passed through an anti-aliasing filter 

with a cut-off frequency of about 7.5 kHz prior to the digitization. A waveform editor 

(Speech Acoustic Lab, Ocean) was used to select a stable 20-period, segment for each 

subject. 

The period boundaries of the selected voice segments were determined from the 

residue signal of linear predictive (LP) inverse filtering. The order of the LP filter 

was 12. The autocorrelation method and the Hamming window were used in the LP 

analysis. The window length was 256 points and the window step size was 128 points. 

The location of period boundaries was identified using a time-delayed, peak-picking 

algorithm. Time-delay was introduced to ensure that each maximum located was 

global within a given time bracket and demarcated boundaries of the fundamental 

periods. These period marks were assumed to be the correct period boundaries. 

Error in PBD was introduced by adding a zero-mean, uniformly distributed ran 

dom number to the absolute time locations of detected period boundaries. The level 

of PBD error was controlled by the maximum of the random number generator. This 

maximum varied from 0 sample to 10 sample, in incremental steps of 1 sample. The 

altered locations were used as the period boundaries for SNR computation. The SNRs 

were computed in the same manner as described earlier for synthetic voices. 

A two-step procedure was used in the statistical analyses of the computed SNRs. 

First, a polynomial regression (3rd order) of SNR as a function of PBD error was 

made for each subject. Second, an analysis of variance (ANOVA) was undertaken to 

assess the effects of gender and method of SNR estimation on the coefficients of the 

regression polynomial. In the ANOVA, the dependent variables was the coefficients 

of the regression polynomial. The independent variables were gender group, method 

of SNR estimation, and the interaction between gender group and method of SNR 

estimation. 
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IV. Results and Discussions 

The computed and known SNRs of the synthetic signals are plotted as a func 

tion of noise level in Figure 4, as a function of fO perturbation in Figure 5, and as a 

function of PBD error in Figures 6, 7 and 8. For synthetic voice signals, ZPT- and 

UDP-bascd SNRs accurately define known SNRs over a wide range of signal condi 

tions/perturbations. ZP-bascd SNRs significantly underestimate known SNRs (see 

Figure 4). ZPT- and UDP-based calculations of SNR were not significantly influ 

enced by level of /0 perturbation, whereas ZP-based SNR was significantly influenced 

by level of /„ perturbation (sec Figure 5). UDP-bascd calculations of SNR were also 

not significantly influenced by PBD error. ZPT-based calculations of SNR decreased 

slightly as level of PBD error increased, when perturbations in fO and amplitude were 

small (see Figure 6). ZP-based calculations of SNR were significantly influenced by 

level of PBD error (see Figures 6, 7 and 8). 

The computed SNRs for each of the 16 natural voices are plotted as a function 

of PBD error in Figure 9. The means and standard deviations of the regression 

parameters of the functions plotted in Figure 9 arc tabulated in Table I. The A NOVA 

results of based on these parameters are provided in Table II. 

The ANOVA results indicate that gender did not exert a significant effect on 

the regression parameters and that the interaction between gender and SNR estima 

tion method was not significant. Method of SNR estimation did exert a significant 

influence on the regression parameters. Post hoc testing revealed that significant 

method differences in intercept and linear slope existed between ZP and ZPT and 

between ZP and UDP-based estimations. Significant differences in the quadratic and 

cubic terms were found between ZP and UDP and between ZPT and UDP-based 

estimations. ZP-based SNR functions exhibited a significantly smaller intercept and 

a significantly larger negative slope than ZPT- and UDP-based functions (see Figure 

10 
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9). ZP- and ZPT-based functions exhibited significantly larger quadratic and cubic 

terms than UDP-based functions. 

Three major findings emerge from these analyses. As expected, ZP-based SNRs 

generally did not provide accurate estimation of amplitude perturbations of syn 

thetic and natural samples. Second, ZPT-bascd SNRs provided accurate estimation 

of amplitude perturbations of synthetic samples; however, estimation of amplitude 

perturbations present in natural voices measured by this method was significantly 

influenced by the level of PBD error. Third, UDP-bascd SNRs provided an accurate 

estimation of amplitude perturbations of synthetic and natural samples that was not 

significantly influenced by fO perturbation and PBD error. 

From a comparative point of view, computation of ZPT-based SNR is much sim 

pler than UDP-bascd computation. ZPT computation requires only a forward and 

inverse Fourier transform and can be implemented using a fast algorithm. By con 

trast, UDP-bascd calculation is computationally intensive. The UDP method is, how 

ever, robust in the presence of fO perturbation and PBD error, presumably because 

this method optimally minimizes temporal influences in the calculation of amplitude 

perturbation. 

This work was motivated, in part, by our need to develop a method of mea 

suring amplitude perturbation that did not depend upon accurate determination of 

period boundaries. In this paper and in prior work (Qi, 1992), we have attempted 

to demonstrate how time-normalization can significantly influence estimation of am 

plitude perturbation. One of our goals was to develop procedures that optimally 

separate temporal from amplitude variations in voice signals. UDP-based SNRs for 

normal voices and a wide range of synthetic voices have been shown to provide ac 

curate estimates of amplitude perturbation that are independent of fO perturbation 

and PBD error. Based on this observation, we are currently using the UDP-based 

method to estimate amplitude perturbation in both pathological and normal voices. 

11 
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Figure 1. (a) A pair of waveforms, (b) Amplitude difference between waveforms. 
(c) The waveforms after optimal alignment in time, (d) The remaining difference 
between the waveforms. 
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Figure 2. Sample signals before (top) and after (bottom) zero-phase transformation. 



(M-5.N) (M.N) 

•0.1+5) 

(M.N-8) 

(1+5.D 

1 I , ■ I . I I I , 1 I I I 

I Mr 7 I T 

Figure 3. Illustration of the Unconstrained Dynamic Programming computation. 
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Signal-to-noise ratios as a function of relative noise level. 
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Figure 6. Signal-to-noise ratios as a function of period determination error when fO 
and amplitude perturbation are at 1% level. 
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Figure 7. Signal-to-noise ratios as a function of period determination error when fO 
and amplitude perturbation are at 5% level. 
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Figure 9. Signal-to-noise ratios as a function of period determination error for (a) 
male and (b) female subjects. Each small figure is for one individual subject. 
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Comparing reliability of perceptual and acoustic measures of voice1 
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Acoustic analysis is often favored over perceptual evaluation of pathologic voice because 

it is considered objective, and thus reliable. "Subjective11 ratings of voice quality are not highly 

regarded as either clinical or research tools, because of problems with intra- and interjudge 

reliability (e.g. Ludlow, 1981; Cullinan et al., 1963), because they are considered to lack 

objectivity and do not require great technical sophistication (Weismer & Liss, 1991), and 

because there is ho accepted set of perceptual scales used by clinicians (e.g. Jensen, 1965; 

Yumoto et al., 1982). In part because of these views, so-called "objective," non-perceptual 

measures for vocal assessment have received much more attention in voice research. The 

assumption seems to be that some day acoustic measures may ftinction in the place of perceptual 

assessment, thus alleviating concerns about listener unreliability. 

However, recent studies suggest that this traditional bias in favor of acoustic analyses of 

voice may be unwarranted. Perceptual data (Kreiman et al., 1993; Gerratt et al., 1993) indicate 

that much of the noise in listeners' ratings is in fact predictable, and thus potentially controllable. 

Further, a study comparing several systems for perturbation measurement (Bielamowicz et al., 

1993) suggested that agreement among different systems may be worse than assumed. 

Bielamowicz et al. compared values of jitter and shimmer produced by C-Speech (ver. 3.1), Kay 

CSL, SoundScope (ver. 1.09), and by an interactive hand marking system2 developed at the VA 

Medical Center in West Los Angeles, for 50 voices ranging from normal to severely pathologic. 

Results for jitter are summarized in Figure 1. Analysis packages varied in their level of overall 

agreement, with Pearson's r for pairs of algorithms ranging from .21 to .77. However, even 

systems whose jitter measurements were moderately correlated did not necessarily produce the 

1 This research was supported in part by NIDCD grant # DC 01797 and by VA Merit Review 
Funds. Address correspondence to Jody Kreiman, VA Medical Center, West Los Angeles, 

Audiology and Speech (126), Wilshire & Sawtelle Blvds., Los Angeles, CA 90073. 

2 In this system, a waveform landmark (positive peak, negative peak, or zero crossing) that 
could be identified reliably from cycle to cycle was selected by hand. Perturbation measures 

were calculated using linear or parabolic interpolation, as appropriate (Titze et al., 1987). 
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Figure 1. Comparison of jitter values produced by four analysis systems. 

same numbers for a given voice. None of the lines in Figure 1 has a slope near 1, indicating that 

all packages systematically under- or over-estimated jitter relative to the others. 

Two questions emerge from these findings. First, how do perceptual ratings of voice 

quality actually compare to acoustic measurements in reliability? Second, how similar are 

perceptual and acoustic analyses in their characteristics as measurement systems? That is, how 

similar are the patterns of agreement and disagreement among raters to those among analysis 

systems? To address these questions, we asked listeners to rate the roughness of the voice 

samples examined by Bielamowicz et al. (1993), and compared their ratings to the jitter 

measurements produced by the four analysis systems studied there. 

METHOD 

Listeners 

Ten experienced listeners (otolaryngologists, speech pathologists, and phoneticians) 

participated in this experiment. Each had a minimum of two years1 experience evaluating 

pathologic voice quality. 
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Stimuli 

Fifty voices (29 male and 21 female) were selected from an existing library of samples. 

These voices were also used in the study by Bielamowicz et al. (1993) described above! Voices 

ranged from normal to severely disordered, with approximately the same number of voices at 

each of 5 severity levels. 

Voice samples were originally obtained by asking speakers to sustain the vowel /a/. 

Utterances were low-pass filtered at 8 kHz, and a 2-second sample was digitized at 20 kHz from 

the middle of each utterance. Prior to the listening tests, digitized segments were normalized for 

peak voltage, and onsets and offsets were smoothed by 50 ms ramps to eliminate click artifacts. 

Procedure 

Listeners rated each voice twice, although they were not informed that any voices were 

repeated. Stimuli were rerandomized for each listener and were presented at a comfortable 

listening level in free field. 

Listeners were tested individually in a sound-treated booth. Because jitter may be 

correlated with vocal roughness (e.g., Hillenbrand, 1988; Wendahl, 1966), they were asked to 

rate the roughness of each voice sample on a 7.5 cm visual analog scale, using whatever criteria 

for roughness they normally applied. The scale was displayed horizontally on a computer 

monitor, and had a resolution of 1 mm. Endpoints were labeled "not rough at all" and 

"extremely rough." Ten practice trials preceded the experimental session to familiarize listeners 

with the task. 

RESULTS 

Intrarater Agreement 

Levels of test-retest agreement were acceptable for all listeners. Across listeners the 

correlation (Pearson's r) between the first and second ratings ranged from .75 to .90, with a mean 

of .83 (sd = .06). On the average, the first and second ratings differed by 9.8 mm (sd = 9.04). 

Matched sample t-tests compared the first and second ratings of each voice, and indicated 

that ratings drifted significantly within a listening session. On the average, voices sounded 

significantly rougher at the second presentation than at the first (t = -7.56, df = 499, p < .01 one-

tailed). Differences between the first and second ratings were also significant for 5 of the 10 

individual raters (p < .01, adjusted for multiple comparisons). This drift is consistent with 

previous studies using unanchored rating protocols (Kreiman et al., 1993; Gerratt et al., 1993). 

Of course, computer-based algorithms will always produce identical results under 

identical conditions. However, changes in analysis parameters within a given system did 

produce differences in results (Bielamowicz et al., 1993). Repeated independent analyses of 8 
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voices using the interactive hand-marking system produced mean jitter values within 0.05 ms in 

all cases (mean difference = 0.01 ms; sd = 0.02); percent jitter values were within 1% in all cases 

(mean difference = 0.20%; sd = 0.35%). (One voice was rejected as unmarkable in both 

analyses.) Mean jitter values produced by tokenized and untokenized analyses in C-Speech were 

correlated at .80; CSL analyses with tolerances of 1 and 20 ms were correlated at .47. 

Interrater Reliability 

Pairs of raters varied considerably in the extent to which their ratings agreed. Interrater 

agreement ranged from .32 - .90 (as measured by Pearson's r), with a mean of .71 (sd = .14), 

compared to a range of .21 to .77 for the different analysis systems (Figure 1). The intraclas^s 
correlation (ICC) was calculated using a mixed model ANOVA treating voices and listeners as 

random effects and presentations (first vs. second) as a fixed effect (model (2,1); e.g., Ebel, 

1951; Shrout & Fleiss, 1979). This statistic reflects the overall cohesiveness of a group of raters, 

as compared to the pairwise comparisons above, and reflects the extent to which the present data 

might generalize to a new random sample of listeners. For the present data, the ICC = .64, 

consistent with the variability seen in the pairwise comparisons. Confidence intervals about the 

ICC were calculated using the formula in Shrout and Fleiss (1979). With 95% certainty, the true 
ICC value fell in the range .54 < p < .75. 

10 20 30 40 50 60 70 80 

Mean Rated Roughness (mm) 

Figure 2. Variability in roughness ratings as a function of the mean rating. 
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Examination of patterns of agreement among pairs of raters suggested that subjects fell 

into two distinct "populations." One group included 7 raters; the other included 3. A one-way 

ANOVA showed that pairs of raters drawn from a single population agreed significantly better 

than pairs drawn from different populations (F(l,43) = 52.30, p < .01). Within a hypothetical 

population of raters, Pearson's r for pairs of raters ranged from .61 to .90, with a mean of .81 (sd 

= .07); across populations, r ranged from .32 to .81, with a mean of .60 (sd = .12). 

Ratings of Individual Voices 

Figure 2 shows the width of the 95% confidence interval (in mm) about the mean rating 

of each voice, plotted against the mean rating for that voice. The better the agreement among 

raters, the smaller the confidence interval. This figure shows the typical pattern (cf. Kreiman et 

al., 1993) of better agreement among raters (i.e., narrower confidence intervals) for voices at 

scale extremes, and worse agreement for moderately severe voices. The width of the confidence 

intervals ranged from 4.4 mm (± 2.2 mm) to 21.8 mm (i.e., ± 10.9 mm), for the 75 mm scale 

used here. In contrast, Figure 3 shows the 95% confidence intervals (in percent) around the 

mean of the percent jitter values produced by the different acoustic analysis systems. 

Uncertainty about measured jitter (indicated by larger confidence intervals) increases as a linear 

10 15 

Mean V. Jitter 

20 

Figure 3. Variability in measured jitter as a function of the mean of values produced by four 

analysis systems. 
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Figure 4. Variability in roughness ratings as a function of severity of pathology. 
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Figure 5. Variability in measured jitter as a function of severity of pathology. 
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function of the mean value (F(l,47) = 878.11, p < .01; r2 = .95). Confidence interval width 

ranged from 0.48% to more than 44%.3 

Figures 4 and 5 show how measurement uncertainty varies with severity of (perceived) 

pathology, for listeners and analysis systems respectively. For listeners, the range of variability 

in ratings increased slightly for voices with moderately severe pathology, again consistent with 

previous studies (Kreiman et al., 1993). That is, uncertainty about reliability is greatest for 

voices in the mid-range of pathology, and least for voices with mild or extremely severe 

pathology. In contrast, the "variability of the variability" associated with measured jitter 

increases with severity for the analysis packages, although packages apparently agreed about 

some voices at all severity levels. 

Figure 6 shows the confidence intervals around mean voice ratings, plotted against the 

confidence intervals for mean jitter values. Data on both axes have been log transformed. This 

figure indicates that listeners tend to be most reliable when acoustic measures are most 

unreliable, and vice versa4. 

DISCUSSION 

Levels of intrarater agreement in this study compare well to those in the literature (e.g., 

Kreiman et al., 1993; Gerratt et al., 1993), and represent good performance by experienced 

listeners. At least some test-retest disagreement is caused by systematic drift in ratings, which 

may be controllable by "anchored" paradigms using fixed comparison stimuli, as we have 

recently proposed (Gerratt et al., 1993). In one sense, intra-system reliability is not a serious 

issue for acoustic analyses, because computer-based algorithms will always produce identical 

results under identical conditions. However, changes in analysis parameters within a given 

system did produce differences in results (Bielamowicz et al., 1993). Recall that the correlation 

between listeners' first and second ratings of the voices ranged from .75 to .90. The correlation 

for analyses with different parameters within a given package ranged from .47 to .80. Thus 

across voices performance for even the worst listeners compared well with that of the most 

consistent analysis systems. 

Across pairs of listeners, interrater reliability (measured by Pearson's r) ranged from .32 

to .90; the ICC was .64. This compares well to Pearson's r for pairs of analysis systems, which 

ranged from .21 to .77. However, agreement levels among listeners improved greatly (r = .61 to 

.90) when listeners were compared only to others drawn from the same hypothetical "population 

of raters." The finding that listeners agreed and disagreed in groups is consistent with 

3 Mean jitter values produced by C-Speech were converted to percent jitter for this analysis. 
4 The regression is significant (F(l,47) = 14.88, p < .01); r2 = .24. 
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multidimensional scaling studies of roughness (Kreiman et al., in press), which reported 

consistent differences in the strategies listeners used when judging roughness5. That study 

further demonstrated that differences in how listeners focus their attention on the different 

aspects of multidimensional perceptual qualities are a significant predictor of interrater 

agreement in voice quality ratings. Thus much of the variation in ratings within and across 

listeners may not in fact be noise, but may reflect the operation of consistent, predictable 

perceptual processes. A better understanding of these processes may lead to rating protocols 

which farther enhance listener reliability. 
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Figure 6. Variability in perceived roughness, vs. variability in measured jitter. 

Interestingly, listeners and acoustic analysis algorithms differed in their properties as 

measurement systems. As Figure 6 showed, variability in jitter measures increased as rating 

reliability improved. Variability in ratings remained fairly constant across levels of severity, 

while variability in measured jitter increased dramatically with severity. These results suggest 

that acoustic measures have advantages over perceptual measures for discriminating among 

essentially normal voices. However, these advantages disappear once signals become irregular. 

5 In particular, listeners varied in how they handled breathy turbulent noise and tremor. 
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We therefore question the clinical assumption that acoustic measures may reasonably substitute 

for perceptual evaluation in the assessment of pathological vocal quality. 

Our results suggest that measured jitter is a function of both signals and algorithms, 

much as perceptual measures are a function of both signals and listeners. While standardization 

of analysis techniques would solve the problem of disagreements among systems, a standard 

protocol will still represent a mapping between signals and measured values. The critical issue 

then becomes defining the "correct" algorithm, the choice of which must depend not only on 

technical considerations, but also on the purpose for which these measures are intended. As long 

as acoustic measures are used to detect or define pathology, to aid in diagnosis, to measure the 

extent of pathology, or to monitor treatment, they must reflect listeners' perceptions reasonably 

well. Standardization without attention to the characteristics of the application will result in 

measurements which are not useful. 

In conclusion, listeners and analysis packages differ greatly in their measurement 

characteristics, but reliability is not a good reason for preferring acoustic to perceptual measures. 

Patterns of disagreement suggest that for clinical purposes perceptual measures are probably 

superior to current acoustic analysis systems. Standardization of acoustic measurement 

procedures without careful attention to all elements in the speech chain will not be fruitful. 
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Acoustic analysis is becoming the preferred means of documenting normal and abnormal 

vocal qualities. These measures have long been popular in research applications, and the 

availability of off-the-shelf, automated programs now permits researchers and clinicians to 

generate acoustic values in almost real time fashion. Thus, use of these measures is becoming 

increasingly common in the clinic. Reflecting the increasing popularity and availability of 

acoustic measures, speech scientists and clinicians have focused much energy on technical and 

theoretical aspects of measuring vocal jitter and other aspects of vocal quality. We are here 

today, a little over 30 years after Lieberman's (1963) original paper on jitter, finally talking 

about ways to standardize these measures. 

Although standardization is a worthy and noble goal, discussion of a measure's utility 

should be a prerequisite to the investment of more resources and effort The utility of acoustic 

measures is occasionally questioned in the literature, particularly with respect to analyses of 

pathological voice (e.g., Hillenbrand, 1987), yet very little serious discussion has taken place in 

the scores of papers that have appeared in recent years. One notable exception is Catford, who 

argued in 1977 that the study of the acoustic signal without direct regard for the underlying 

physiology or its perception by a listener is without much purpose. An analogy to this argument 

is the study of the ink used in writing. Normally, the ink is useful only to the extent that its 

brightness, color, texture, and pattern conveys information from the writer to the reader. The 

careful investigation of these ink qualities in themselves is not usually informative about either 

the writer or the reader. Similarly, acoustic measures may shed light on physiologic or 

aerodynamic processes in speech; however, direct measures of these processes provide much 

better information, and are widely available. 

What are the theoretical significance and practical uses of acoustic measures of vocal 

quality? This paper will focus on vocal perturbation, because of its great popularity for both 

1 This research was supported in part by NIDCD grant #DC01797, and by VA research funds. 

Address correspondence to Bruce R. Gerratt Audiology and Speech Pathology (126), VA 

Medical Center, West Los Angeles, Wilshire & Sawtelle Blvds., Los Angeles, CA 90073. 
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voice researchers and clinicians and because knowledge of the vocal period is a requirement for 

a number of other popular measures of voice. However, to varying degrees, our concerns apply 

to many other acoustic measures of voice quality. We will argue that perturbation measures 

have never been shown to correlate well with perceived vocal quality, have never been 

convincingly demonstrated to distinguish among pathological diagnoses, and in fact do not even 

consistently differentiate normal from pathological signals. Further, making these measures for 

voices that deviate from normal periodicity is technically difficult, if not impossible. In fact, the 

logic of measuring periodic deviation breaks down as the voices increasingly deviate from 

periodicity. 

Problems Correlating Perturbation Measures and Physiology 

Because perturbation of the signal can arise from a great number of sources, a particular 

jitter value (for example) can be accounted for by perturbation in muscular innervation, by 

secretions on the vocal folds, by mass deviations on the vocal folds, by tension asymmetry of the 

vocal folds, by randomness of flow through the glottis, by laryngeal tremor, by irregularities in 

source-vocal tract interactions through unstable articulatory configurations, or by almost any 

other deviation of laryngeal function (e.g. Titze, Horii, Scherer, 1987). In this way, jitter 

provides a very poor description of the actual laryngeal behavior which caused the perturbation 

observed in the acoustic signal. Thus, it is not surprising that researchers have found that jitter 

does not differentiate well among diagnostic categories (Hirano, 1989; Hirano, et al., 1988) nor 

even consistently separate pathologic from normal voices (Ludlow et al., 1987; Klingholz & 

Martin, 1983; Hecker & Kreul, 1971). Some researchers (LaBlance & Maves, 1992; Hirano et 

al., 1988) have argued that these measures are useful for documenting improvement following 

surgical treatment for voice disorders. However, in these studies perturbation values for both the 

pre- and post-treatment groups typically overlap with normal values, so it is difficult to know 

what such changes in jitter values actually signify. 

Problems Correlating Perturbation Measures and Listener Perceptions 

Despite the poor correlation of these acoustic measures to the underlying physiology, 

their relationship to listeners1 perception of voice quality have traditionally been of great interest 

to researchers, for several reasons. First, the relationships among the various levels within the 

speech chain has its own inherent interest. Second, the historical difficulty in understanding and 

predicting quality perception has led researchers to seek a technology-based substitute for 

perceptual ratings. 

However, understanding the relationship between acoustic and perceptual measures has 

proven difficult. Voices that are quite similar in quality can have quite different perturbation 
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measures, and voices that are quite different in quality can have perturbation levels which are 

similar. 

In fact, studies examining the correlation between perturbation measures and perceptual 

qualities in disordered and normal speakers have had consistently negative results (e.g. Arends et 

al., 1990; Eskenazi et al., 1990; Heiberger & Horii, 1982; see Ludlow et al., 1987 for review). 

Studies using synthetic stimuli or using imitations of pathological qualities produced by normal 

speakers reported higher correlations (e.g. Coleman & Wendahl, 1967; Hillenbrand, 1988; 

Wendahl 1963, 1966). These better results are probably explained by the fact that the stimuli 

used vary primarily in only one dimension. 

In contrast, pathological voices are perceptually complex, with many vocal qualities co-

occuring and interacting. Studies using multivariate techniques and pathologic speakers have 

reported better correlations between perturbation measures and perceptual dimensions in 

multidimensional contexts (e.g. Kempster et al., 1991; Kreiman et al., in press; Eskanazi et al., 

1990). Presumably, these improved correlations reflect the use of more appropriate perceptual 

models. 

Thus, it appears that there is not a simple one-to-one correspondence between one 

perturbation measure and one perceptual quality. Traditional approaches seeking such 

associations imply far too simple a model of quality perception. Even traditional "qualities" 

such as breathiness and roughness may in fact be multidimensional, as we have recently argued. 

For example, voices described as breathy can include a diverse number of qualities which should 

not be funnelled into one perceptual construct. In fact, we found that a large source of listener 

variability (and an associated reduction in reliability) is that when listeners rate a voice on a 

perceptual scale, they pay attention to different dimensions of that quality (Kreiman et al., in 

press). 

A further consideration is the dependence of quality perception on factors that are 

external to the voice itself. For example, the context within which a voice is judged has been 

shown to systematically affect the rating it receives (Gerratt, et al., 1993) Listeners' experience 

and perceptual habits also affect their perceptions (Kreiman et al., 1992; Kreiman et al., in 

press). In a study comparing listener groups, naive and expert listeners differed substantially in 

the perceptual strategies used to judge pathologic vocal quality; naive listeners primarily 

attended to F0 and deviation from normal, while experts used more complex, idiosyncratic 

perceptual strategies. In another study, differences between expert listeners in their judgments 

of roughness ranged from extreme (e.g., using unrelated perceptual strategies) to subtle (for 

example, using categorical vs. continuous dimensions for the same perceptual features). Better 

perceptual models may lead to voice judgment protocols which resist the effects of such 

variables. However, at present, it is naive to expect straightforward relationships between 
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acoustic signals and qualities, because acoustic signals do not provide information about these 

listener- and protocol-dependent effects. 

The Paradox of Measuring the Unmeasurable 

Another problem is the inherent difficulty in measuring perturbation in signals that 

deviate significantly from periodicity. This presents something of a paradox: As the 

phenomenon of interest (departure from periodicity) increases, confidence in determining 

periodicity (the essence of the measure) decreases. Several common voice types present 

particular difficulties (Figures 1-3). For some signals, periodicity cannot be defined with regard 

to the traditional concept of a single fundamental frequency. Other signals are simply too 

aperiodic for periods to be determined reliably. The greatest challenge here is making the 

decision of when to abandon the measurement result as invalid. At present, there are no 

accepted methods for making this decision. 

Figure 1. Acoustic waveform from a severely pathological voice: This 120 msec signal taken 

from a sustained production of/a/ corresponds to a severely breathy, moderately rough vocal 

quality, produced by a 39 year old man with chronic unilateral vocal fold paralysis after several 

attempts at Teflon augmentation. 

Importantly, supraperiodic voice signals are fairly common among pathological and 

normal speakers. KJatt and Klatt (1988) reported that bicyclicity occurred in more than 25% of 

the utterances they examined. Both human operators and machine algorithms have great 

difficulty in measuring periodicity in these signals. The result is great disagreement among 

programs and among people. Thus, the practical problem of actually making the measurement 

in many of the voices which researchers and clinicians want to study also seriously reduces the 

utility of the measures. 
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Figure 2. Bicyclic phonation (FO/2 subharmonic). There is noticeable period doubling in this 

120 msec signal of a sustained /a/ from a 79 year old woman with vocal hyperrunction. 

Boundaries of vocal periods are marked by arrows. The corresponding auditory impression is a 

buzzing, mechanical, rough quality. 

Figure 3. Diplophonic phonation (biphonation) - a high frequency wave (260 Hz) modulated by 

one of much lower frequency (44 Hz): This 120 msec signal represents a sustained /a/ produced 

by a 29 year old woman with a unilateral vocal fold paralysis. The corresponding auditory 

impression is rough, pulsed, and quite complex, with ambiguous pitch. 

Conclusion 

We have argued that categorizing and describing the acoustic signal is far less important 

than understanding its relationship to the other levels within the speech chain. However, we 

have presented some discouraging arguments regarding the possibility of relating acoustic 

measures to these other levels. Problems in correlating these measures to physiology appear 

unsolvable at present, an observation which has been made repeatedly by many. Significant 

theoretical and practical problems exist in relating acoustic measures to vocal quality perception. 
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although ultimately these may someday be alleviated by developing better perceptual models 

which include careftil attention to interactions among the signal, the listener, and the listening 

task. Finally, periodicity is difficult to define for many voices, and some point exists beyond 

which vocal cycles cannot be identified reliably. Measuring jitter makes little sense for this 

category of voice. However, it is unclear at what point periodicity truly disappears, and it is 

unclear how such a point might be defined consistently. The limits of periodicity need better 

definition so that a user can know the level of confidence associated with a measurement result. 

Until these concerns regarding measurement utility are ftdly addressed, standardization of 

measures based upon vocal periodicity may proceed to an uncertain goal. 
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Introduction 

Clinicians are often disenchanted by the possible diagnostic value of measures of voice and 

speech for various medical disorders associated with voice and speech. However, before the 

diagnostic value of these measures can be evaluated, we must establish normal ranges for these 

measures under standard conditions and across a variety of healthy subpopulations. If the 

percentiles are to be estimated by the crude maximum likelihood estimates, random sample sizes 

to establish normal ranges within acceptable limits usually are require to be 400 to 2000 subjects 

per subpopulation. If one employs resampling methods, one can substantially reduce necessary 

sample sizes. This translates to large savings in cost and time, making the establishment of normal 

limits more feasible than ever before. 

Measures of voice perturbation are typically skewed and bounded below by 0.0, such as 

jitter, shimmer, the harmonic-to-noise ratio and the coefficients of variation for frequency and 

amplitude. For measures such as these one is typically required to sample at least 800 subjects to 

establish a normal range. Focusing on these four measures of voice perturbation, we will review 

the concept of normal range, present the data to be used for our examples, highlight resampling 

options and present antithetic resampling results for examples from a sample of 47 disease-free 

males (Ramig and Ringel, 1983). 

This work has been supported in part by the National Center for Voice and Speech, NCVS, with 

support form the National Institute on Deafness and Other Communication Disorders (Grant: 

P60 DC 009 7 6) and in part by the University of Iowa College of Medicine Departments of 

Preventive Medicine and Environmental Health, and Otolaryngology. 
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Background 

Concept of Normal Range 

By definition, the normal range of a continuous variable contains 95% of all disease-free 

individuals in a population. Recognize that abnormal and disease-free are not synonymous. By 

definition, 5% of the disease-free people must have abnormal values. When a person has a 

characteristic in the normal range, one is not guaranteed to not have associated medical problems. 

Changes within the normal range may be pathologic and indicative of a medical problem. The 

diagnostic value of a variable depends upon the distribution of a variable for people with a certain 

medical condition and the prevalence of the medical condition in the population that gets referred 

for evaluation. If everyone in the general population gets tested and the prevalence in the general 

population is low, the predictive value positive will be minimal even for sensitivities in the range 

of 99%. 

Different populations may have different normal ranges. Males and females certainly have 

different normal ranges for fundamental frequencies and one expects them to have different 

normal ranges for other variables as well. Especially for variables which measure maximum 

performance speech tasks, one will find the normal ranges will change with age (Ramig and 

Ringel, 1983). Age-related changes have been reported for fundamental frequency, maximum 

phonation range and average jitter by Mysak (1959), Endres, Bambach and Flosser (1971), Segre 

(1971), Hollien and Shipp (1972), and Wilcox and Horii (1980). For acoustic voice measures, the 

normal range typically becomes wider as the upper limit changes more rapidly then the lower limit 

reflecting an increase in intersubject variability with age. If the measure is a perturbation measure 

bounded below by 0.0, the lower limit should be set at 0.0 and not change at all. The upper limit 

should be the 95th percentile (P95) and may be expected to increase with age. Whereas, other 

measures such as maximum duration of sustained phonation or maximum phonation range should 

have a normal range bounded below by P2 5 and above by P97 5. For these factors they can be 

expected to decrease with age. There are ethnic differences in some normal ranges. 

It may not be desirable to be in or stay in the normal range. Just as basketball players 

prefer to be abnormally tall, singers and orators value their voices with abnormally high or low 

pitch or abnormally wide pitch range. Olympic records are set by people with abnormal abilities. 

If a normal range is changing with age and you were normal, maintaining the youthful level may 

be just fine even when it is abnormal. 
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The normal range is not to be confused with the normal distribution, even though the 

normal range is often explained using the normal distribution. In the normal distribution case one 

typically wants the middle 95% disease-free individuals defined as normal, leaving 2.5% on each 

side. In general one can split the 5% disproportionately provided it makes sense pathologically, 

as long as you capture 95% of the disease-free individuals. Perturbation measures are skewed. 

The whole idea of telling somebody that they are abnormal with a jitter of 0.1% or with any other 

perturbation measure very close to 0 doesn't have any diagnostic value when the measure is 

associated with a disorder. You only want to consider a person abnormal if the value is 

excessively high. For perturbation measures we always recommend using the 95th percentile 

(P95) as the upper the normal limit and 0.0 as your lower limit. 

Distributions of Perturbation Measures 

Ramig and Ringel (1983) present perturbation measure data conditional upon 47 male 

subjects' exercise level. Their objective was to contrast healthy men who were active vs. inactive. 

The subject pool was partitioned into thirds by activity level with the middle 1/3 excluded. Thus, 

the data does not represent a random sample of men and the presented estimates should tend to 

overestimate the upper limits of the normal ranges. 

The perturbation measures of jitter and shimmer are defined by 

N 

— , where N is the number of consecutive cycles. i=2 

(N-l) 

For jitter the xj is the frequency of the ith cycle and for shimmer the x[ is the amplitude of the ith 

cycle. The coefficients of variation for frequency and amplitude are determined by 

N 

Jitter and shimmer are means of absolute values and thus always nonnegative. 

Coefficients of variation in frequency and amplitude are nonnegative with very skewed 

distributions and are typically analyzed inappropriately using normal distribution theory. 

Similarly, the harmonic-to-noise ratio must be nonnegative and is very skewed. 
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We present the data from Ramig and Ringel (1983) using stem-and-leaf plots, which retain 

all the data unlike histograms where the actual values of the data are lost. The data is also 

ordered and reflects the shape of the distribution. Consider Figure 1, where we present the jitter 

data. The stem is the middle column of numbers and the leaves are to the right. There are 47 

leaves for the 47 subjects. For jitter the leaf unit is to the hundredth of a percent. The first row 

6 | 2 | 455789 represents 0.24%, 0.25%, 0.25%, 0.27%, 0.28% and 0.29%, the six lowest jitters 

(leaves) with the 6 on the left representing the cumulative frequency through the first level. The 

totals on the left are cumulative from both the minimum value on the top and the maximum value 

from the bottom. The (9) on the left of the third row indicates the number of leaves on the branch 

with the median value (P50) of 0.43%, which is easily identified by using the cumulative counts 

either from the top or the bottom. The data ranges from a minimum of 0.24% to a maximum of 

1.13%, represented by the last leaf at the bottom of the figure. The crude maximum likelihood 

estimate (P95) of P95 is 0.98. 
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3 

Figure 1: Stem-and-leaf plot of jitter 

(leaf unit = 0.010%) 

The stem-and-leaf plots for shimmer, harmonic-to-noise ratio, and coefficients of variation 

for amplitude and frequency appear in Figures 2-5, respectively. The shimmer values range from 

0.8% through 7.2% with a median value P50 of 1.7% and P95 is 6.1%. The harmonic-to-noise 

ratios vary from 14.7 to 25.6 with a P50 of 20.6 and P95 equal to 24.6. The coefficient of 

amplitude ranges from 2.0 to 15.3 with P50 =6.2 and P95 = 11.3; and the coefficient of frequency 

ranges from 0.52 to 2.16 with P50 = 0.94 and P95 = 1.61. 
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Figure 2: Stem-and-leaf of shimmer 

(leafunit = 0. 
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Figure 3: Stem-and-leaf for the 

harmonic-to-noise ratio 

(leafunit = 0.10) 
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Figure 4: Stem-and-leaf for the 

coefficient of variation of amplitude 

(leafunit = 0.10) 

Figure 5: Stem-and-leaf for the coefficient 

of variation of frequency 

(leaf unit = 0.010) 
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Resampling Methods 

We will briefly review the bootstrap (or uniform resampling) and antithetic resampling 

methods. The bootstrap is a uniform resampling of your data where you randomly sample the 

original data with replacement. The technique is very useful whenever the sampling distribution 

of an estimator is unknown. (Efron, 1990) From this group of 47 observations, randomly sample 

47 observations with replacement. Some observations will be selected more than once and some 

will not be selected at all. One random sample doesn't provide you with an estimate of the 

standard deviation of the sampling distribution of the estimator. Thus, you take, say, 100 random 

samples with replacement from your original data. The distribution of the 100 estimates 

approximates the sampling distribution of the estimator and then confidence intervals can be 

established for the estimated parameter even when they may not be available theoretically. 

To understand antithetic resampling, let x^, Xr2,, Xr3^, ... xfnl represent the original n 

observations sorted from the minimum Xr^ to the maximum Xr,. If there are ties, they are 

replicated as in the stem-and-leaf figures. Each antithetic sample estimate begins with a uniform 

resampling just as in the bootstrap. Now, each sample is paired with another sample where the 

ranks are the reverse in the following sense: if x™ is in the initial sample, then Xrnl] is in the 

antithetic pair. For n = 47, there are the same number of x^'s in the paired sample as there are 

x[2j's in the first sample. The estimates from the antithetic paired samples are negatively 

correlated, since an overestimate of the parameter in one sample provides a tendency to 

underestimate the parameter in the other sample of the antithetic pair. The two estimates in each 

pair are averaged to obtain the estimate from the pair. Taking the estimates from 100 antithetic 

pairs, one obtains an approximation of the sampling distribution of the antithetic resampling 

estimator. Since the antithetic pair estimates are negatively correlated, one is much better off 

taking a random resampling of 100 antithetic pairs than one is taking 200 bootstrapped 

resamples. 

We performed extensive Monte Carlo studies across a variety of symmetric and skewed 

distributions and sample sizes (64 and 100) to compare crude maximum likelihood estimates, 

bootstrap resampling, importance resampling and antithetic resampling, we found the antithetic 

resampling estimate was the least biased and had the smallest mean square error (MSE) about the 

actual value of P95 being estimated. The MSE of the estimates of P95 using antithetic resampling 

was at least 17% less than the crude estimates in all cases of underlying distributions and sample 
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sizes. To highlight the accuracy when estimating P95 = 9.488 from a Chi-square distribution with 

4 degrees of freedom based upon 1000 simulations, the mean crude maximum likelihood estimates 

and mean antithetic resampling estimates were 8.928 and 9.344, respectively. 

When the actual parametric form of the underlying distribution function is known, then 

solving for the maximum likelihood estimator is recommended over antithetic resampling. 

However, the benefit is small and if the underlying distribution is questionable or possibly a 

mixture of distributions, then we strongly recommend antithetic resampling or a form of 

importance sampling with appropriately chosen weights. (Kim-Anh and Hall (1991), Hall (1991) 

and Johns (1988)). 

Results 

Having taken 100 random resamples from each of the observed distributions of 

perturbation measures, we present the crude maximum likelihood estimates and antithetic 

resampling estimates of P95 in Table 1. In addition, we include an estimated standard error of P95 

(the standard deviation of the antithetic estimates), the corresponding confidence intervals and an 

estimated relative efficiency. To couple variance estimates for the relative efficiency we divided 

the variance of the 200 unpaired bootstrap estimates by the variance of the 100 estimates from the 

antithetic pairs. 

The estimates P95 and P95 of P95 varied depending upon the observed tails of the 

perturbation measure distributions. The greatest difference appeared with shimmer where the 

crude estimate is 15% greater than the antithetic estimate. Even though the estimates may not 

vary dramatically, note in the stem-and-leaf plots how dramatically one could vary the crude 

estimates by adding a single observation to the tail of the distribution. 

The 95% confidence intervals for P95 are fairly wide with a sample size as small as 47. 

There is also a 0.090 probability with n = 47 that all observations were less than P95. When this 

occurs the estimates are obviously underestimates. With a minimum random sample size of 100 

this probability drops substantially to 0.0059. One should not attempt to establish normal limits 

with sample sizes of 47 even with antithetic resampling. 

The minimum estimated relative efficiency is 2.2. Thus, one will have a savings of at least 

55% in the number of subjects required to obtain an estimate of P95 for these perturbation 

measures. With n = 47 we have antithetic estimates which would have required sample sizes of at 
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least 103 (47*2.2) for crude estimates. If one would be required to random sample 800 disease-

free individuals in a subpopulation, one now needs 364 individuals to obtain the same degree of 

accuracy. If one wants to estimate percentiles further from the median, the relative efficiency 

decreases as the negative correlations approach 0. If one wants to estimate percentiles closer to 

the median, the negative correlations approach -1 and the relative efficiency increases 

dramatically. 

The correlations of the antithetic pairs for jitter, shimmer and harmonic-to-noise ratio are 

-0.181, -0.074 and -0.076, respectively. For the coefficients of variation the correlations are 

-0.149 and -0.084 for amplitude and frequency, respectively. These negative correlations were 

crucial to obtain smaller variances through antithetic resampling than for crude estimates or 

bootstrap resampling estimates. The benefit becomes apparent when you consider Figures 6-7, 

where the resampled estimates for the coefficient of variation of amplitude are the means for the 

pairs in Figure 6 and the individual unpaired estimates in Figure 7. When paired, the standard 

deviation is 0.798; while unpaired, the standard deviation is 1.217. 
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Figure 6: Stem-and-leaf plot for the 100 

antithetic pair estimates of the 

coefficient of variation of amplitude 

(leafunit = 0.10) 
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Discussion 

The diagnostic value of any voice characteristic for a specific voice or speech disorder 

depends upon knowledge of the normal range of the characteristic for disease-free individuals, as 

well as the distribution of the variable for subjects with the disorder. Current dissatisfaction with 

the diagnostic value of many measures exists with a lack of knowledge of the normal range. 

Especially, for measures of perturbation there will be many conditions where there is substantial 

overlap between the perturbation measure distribution of the disease-free and those with the 

disorder, and there will be little diagnostic value if any. The diagnostic value varies both by voice 

or speech disorder and voice characteristic. With the advent of antithetic resampling one can 

practically establish normal limits for voice measures using substantially fewer disease-free 

subjects. Since one must expect the normal limits to vary by age, gender and ethnicity, the 

savings is magnified many times when establishing a comprehensive set of normal limits. 

It is crucial that the set of voice measures that has diagnostic value for any specific 

disorder is as small as possible in order to eliminate the random possibility of diagnosing an excess 

number of disease-free individuals as having a voice disorder, that is having a low specificity. 

Thus, for each voice disorder one needs to restrict the number of voice characteristics considered 

to have diagnostic value to at most four or five. Given the correlation between many voice 

measures, the preferred sets should have measures which are orthogonal to each other. 

If one's level of physical activity effects the perturbation measures assessed, then the 

estimates in Table 1 are likely overestimates of the true P95's. This would be the likely case if one 

should expect less than 5% the 24 males excluded from the Ramig and Ringel (1983) study to 

have values less than the estimated P95's. Since the Ramig and Ringel sample of 47 was not a 

random sample of disease-free subjects, the emphasis of this article is not on the estimated values 

but upon the antithetic resampling method to estimate the normal ranges.. 

In speech analysis subjects are at a premium, since it can be expensive and time 

consuming; thus we require resampling methods such as antithetic resampling to obtain good 

estimates of the parameters of interest. This is true for other measures of speech performance 

besides percentiles for disease-free subjects. This technique should be expanded to estimation 

within tokens and across tokens to properly evaluate individual patients. 
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1. Introduction 

As data for a study of changes in voice with age, Arthur House has two sets of recordings 

of three male subjects, the first made in 1960, when the subjects were all about 37 years old. 

and the second in 1990 when they were about 67. Certain findings about vowel duration and 

amplitude have already been reported. (House and Stevens 1993). I have been working with 

Dr. House on a continuation of the study, measuring other speech features such as intonation 

patterns and excitation characteristics. Here two aspects of this work are discussed: automatic 

location of pitch epochs, and estimation of jitter given these epochs. 

(Note: the phrase "pitch period" is used in the literature ambiguously: sometimes it means 

the length of time between glottal closures, and sometimes it means the segment of speech 

starting at one glottal closure and ending at the next. Here I use "pitch period" for the first, and 
"pitch epoch" for the second.) 

2. The Speech Material 

There are three talkers, AH. JM. and KS. Each talker produced the same set of bisyllabic 

nonsense tokens, consisting of a vowel imbedded between identical consonants, and preceded by 

an unstressed /HAX/. Thus typical stimuli sound like "hubob", "hutat", "hugig". Each talker 

went through exactly the same set of utterances in his "old" recording as he had done in his 

"young" recording (but in a slightly different order). 

Tokens were recorded on tape, then digitized at a lOkz sampling rate. 12 bits per sample. 
Hum and noise are negligible. 

In the full study, there are 10 vowels and 23 consonants. For this paper, I selected 12 

consonants and three vowels. /AA/. /IY/, and /UW/, and extracted from each token a sub-

token consisting of the "middle half of the vowel; that is, the signal starting 1/4 of the way into 

the vowel, and ending 3/4 of the way into the vowel (according to Dr. House's hand marking). 
Table 1 gives the total number of pitch epochs per vowel. 

Talker 
young old young old young old 

Vowel AH AH JM JM KS KS 

/AA/ 172 170 169 177 135 133 

/IY/ 146 154 144 144 113 104 

/UW/ 165 170 146 143 113 107 

Table 1: Number of pitch epochs per vowel, per talker, per age 
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3. On Finding Pitch Period 

If we were observing the larynx, we might take as pitch period the time between occurrences of 

some well-defined event in the laryngeal cycle. However we are not observing the larynx, or even 

capturing the signal at the larynx; we have to make do with a poorly-understood transformation 

of that signal. 

If pitch and amplitude are steady, and formants and excitation are not changing, intervals 

between identical events in successive epochs might be a usable approximation to the desired 

laryngeal intervals. An example would be the time of occurrence of the largest peak in the pitch 

epoch. We would also expect, in this case, that the interval at which the signal autocorrelation 

has a maximum will be the same as this interval between well-defined events; and indeed, peak-

picking and autocorrelation, the two most widely-used methods for finding pitch period, usually 

yield very similar estimates. (See e.g. Titte and Liang 1993) 

However, rf any or all of these properties are changing, it's a whole new ball game. If pitch is 

changing, what exactly do we mean by "pitch period"? At the larynx, there is perhaps a physical 

event that occurs once per "cycle"; but in the speech signal, what part of two successive epochs 

should we use as benchmarks to measure interval? Or rf we use autocorrelation, how should it be 

done? (Because the length and type of correlation certainly affect the location of its maximum.) 

If formants are moving, or the excitation is changing, successive epochs look different, and 

there may be no event in two successive epochs to use for an interval measurement. If. in the 

speech signal, we could find the moment of a laryngeal event such as closure, we could use that 

as the benchmark; I know no way of doing this reliably, especially when the form of the epoch is 

changing. 

The tokens in this study contain all these sources of variability. They are spoken with "list 

intonation", the style in which subjects produce every word or phrase in the list, with falling pitch. 

(The pitch may actually rise a little at the start ) Figure 1 illustrates this; you can see that the 

pitch periods at the end of the utterance are longer than those at the beginning. (You can also 

see that amplitude is decreasing, another feature of this speaking style.) 

^ 
~ Figure 1: A typical token 

Since the vowel is surrounded by consonants, the formants move, especially at tbe beginning 

and end of the vowel. In Figure 1 you can see how formant movement is causing differences in 

shape of successive pitch epochs. There are also some tokens with change in excitation, and it 

is these that give the most trouble to the pitch tracker and epoch finder described below. 
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If we needed to determine jitter absolutely (or clinically), these difficulties would be formidable. 

However what we want in our study is a comparison between jitter now and jitter 30 years ago, 

or jitter of AH and jitter of KS, say. And until and unless we look at jitter for vowels in their 

individual contexts, we have plenty of data; at least 100 pitch epochs for every talker/vowel. 

Thus (and perhaps this applies in the clinical case as well) consistency is more important than 

accuracy. We have so far considered four working definitions of jitter, all of which depend on a 

certain epoch-finding algorithm, which is described in the next Section. The measures of jitter 

are discussed in Section 5. 

4. Finding the Pitch Epochs 

Our algorithm for finding pitch epochs involves two kinds of speech analysis and two dynamic 

programs. It is complicated because in real speech, no single pitch-finding method (known to 

me) finds all individual pitch epochs reliably, without occasionally making an unacceptable error. 

Since in our study we have a great number of tokens to deal with, and cannot look at all pitch 

tracks for all tokens, and since it doesn't take many doubled or halved pitch periods to bias 

a statistical test, we need a pitch-epoch-finder that we can trust to operate without error on 

reasonably clean speech. The algorithm proceeds as follows: 

1) Form the smoothed, half-wave-rectified LPC residue for the entire token; 

2) From the residue, estimate pitch period every 100 samples; 

3) Find all the peaks in the rectified LPC residue; 

4) From peaks, select "pitch pulses" that divide the token into epochs; 

5) At each pitch pulse, reestimate pitch period from the original speech. 

4.1 The LPC Residue 

The LPC residue is created by doing a 12-coefficient LPC at centisecond (100 sample) inter 

vals, using 150 Hanning-windowed samples, and putting each 100 samples back through its local 

inverse LPC filter to obtain the current 100 samples of residue. The first line in Figure 2 shows 
a typical speech token, the second line shows its LPC residue. 

The next step is a mild low-pass filtering of the LPC residue. The filter is a crude one: the 

output is the sum of the amplitudes of the last 5 samples, plus the sum of the last 6 samples, 
plus the sum of the last 7 samples. 

In preparation for picking peaks, the residue is tested to determine whether the positive-going 

peaks or the negative-going ones are more prominent. The sum of squares of the positive values 

in the residue is compared with the sum of squares of the negative ones. (Fourth powers might be 
better.) If the negative total is larger, the residue is inverted. Then, since only positive peaks will 

be used, the signal is half-wave rectified (negative values are set to zero). The rectified smoothed 
residue is shown as the third line of Figure 2. 
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Figure 2: Steps in finding pitch epochs 

4.2 Crude Pitch 

Pitch is computed every 100 samples, using as input signal the low-passed LPC residue. The 

pitch finder is a correlation pitch detector with a dynamic-program pitch tracker, which returns 

at every time the "best" 11-long sequence of pitch periods ending at that time. Graphs of pitch 

tracks on all the material used in this study show that the pitch program made no egregious error 
on any token. 

4.3 Finding Peaks 

Next, all the peaks in the rectified residue are located and normalized. Normalization consists 

in expressing the height of a peak as the ratio of its height to that of the tallest peak within a 

span of the local pitch period. The fourth line in Figure 2 shows the normalized peaks. 

4.4 Dividing into Epochs 

Pitch and normalized peaks are passed to a dynamic-program "pitch-pulse finder", which 

accepts a sequence of candidate peaks (times and amplitudes), and finds the "best" subsequence, 

where goodness is a function of both consistency of the interval between chosen peaks, and their 

amplitudes. This subroutine, too, produces no egregious error on any token. The last line in 

Figure 2 shows the speech again, with pulses superimposed. There is one pulse per epoch. 
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4.5 Refining the Pitch Estimate 

The last step in the algorithm is a more precise determination of pitch period. At each chosen 

pulse, as descibed above, there is a local (crude) pitch period P. At that pulse the signal is 

autocorrelated at every (integral) lag L in the range (P-P/2) to (P+P/2). More precisely, each 

pitch lag L is tested by forming the dot product of the L-long stretch to the left of the pulse 

with the L-long stretch to the right of the pulse, normalized by the power in the two L-long 

stretches. Figure 3 illustrates the process. Panel (a) panel shows the signal, centered at the local 

"pulse". Panel (b) is the autocorrelation function of this signal, computed at integral lags. (For 

a discussion of this technique see e.g. Hirose et al. 1992.) 

Finally, cubic spline interpolation is done near the maximum of the autocorrelation function, 

creating values every 10 microseconds. Panel (c) is a blowup of the region inside the rectangle in 

panel (b), showing the interpolated points. The abscissa at which the maximum occurs is defined 
to be the pitch period. 
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Figure 3: Refining the Pitch Estimate 

5. Defining Jitter 

Now that successive pitch periods for a token aft known, we would like a number that 

indicates how much the sequence of pitch periods departs from a "smooth" sequence. There is 

little agreement among voice analysts on how to measure "roughness" in such sequences, even 

in sustained monotone vowels. (See eg Karnefl et al 1991.) The simplest measure is just sums 

of (absolute) differences between adjacent pitch periods, this puts all its emphasis on adjacent 
epochs, and none on epochs two or more apart 

(Voice analysts art not alone having no obviously correct way to express roughness in a 
sequence of observations. Every expermenUl science that produces data of this kind has this 

problem, and many a statistician has blunted his spear (or obtained a Ph.D.) trying to find a 
satisfactory answer to this ill-posed question.) 

Four definitions of jitter have been looked at to date; they give different numbers on any one 

token, but when used in a comparative way they all seem to tell about the same story. 
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5.1 Distance from average of adjacent values 

A simple procedure, found in many papers on jitter, is based on absolute difference between 

the period now and the average of the previous period and the follower period. That is. if three 

successive pitch periods are P{n - l),P(n). and P{n + 1), the local contribution to jitter is 

Ji(n) = \P(n) - P(n 

If epochs are short, then a given difference from expected is perhaps more significant than if 

they are long; one way to take this into account is to express the difference as a percentage of 

the local pitch period, and define jitter as the average of these percentages. Our first measure 
of jitter then, is 

Jitter = (1/n) * £ (100 * Ji(n)//>(n)] 
n 

5.2 Distance from line between adjacent points 

Distance from average has a disturbing property. In places where pitch is changing fast, the 

contributions to total jitter tend to be larger those from regions of slow change. In Figure 4, 

the solid curve is pitch period, and the dotted one is the average of the two surrounding pitch 

periods. The vertical distance of the point at epoch 8 to its "expected" value is large, but it is 

really quite close to the line joining its two neighbors. (The vertical distance can be reduced by 

averaging in the current period as well as its two neighbors.) 

76 

74 

72 

70 

10 

Figure 4: Pitch period vs. "expected" pitch period 

To overcome this difficulty, one can take as the contribution of each point to the total 

jitter its distance from the line joining its two neighbors. If three consecutive periods are again 
P{n - l),P(n), and P(n + 1) this distance is 
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J2(n) = 

(P{n + \) - P(n - 1))* 

It is now perhaps inappropriate to normalize by the size of the local pitch period. Our second 

working definition is 

Ji«er = (l/n)*2>(n) 
n 

5.3 Deviation from a smooth curve 

There are many algorithms for approximating a sequence of points by a "smooth curve". Use 

of any particular algorithm is based on a desire by the owner of a set of data to capture some 

feature of the data. In a recent paper on characterizing intonation patterns in spoken Mandarin. 

S. Chen and Y. Wang (Chen and Wang. 1990) describe an algorithm they consider appropriate to 

their problem, based on Legendre polynomials. On the sequences of pitch periods for the tokens 

in our study, except in a few instances their algorithm produces a curve that, to the eye, is indeed 
a "smooth" version of the plotted data. 

Figure 5 shows three such curves (dotted line) superimposed on the data they purport to 

approximate (solid line). Panel (a) shows an unusually good fit, panel (b) an unusually bad fit, 
and panel (c) a typical fit. 

10 6 8 10 12 14 16 18 

(a) 

6 8 

(C) 

Figure 5: Approximating pitch periods with a smooth curve 

10 

If we call the ordinates of the approximating curve {C{n)}9 and view C{n) as the "expected" 

value of the nth period, then the distance analagous to that defined in Section 5.1 is 

Mn) = \C(n) - P(n)\ 

Again by analogy with the procedure in 5.1, jitter is defined as 

Jitter = (1/n) ♦ £ [100 ♦ J*(n)/P(n)] 
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5.4 Distance to a smooth curve 

The fourth and final measure is again a response to the problem of having larger deviations 

where the pitch periods are changing rapidly. The program finds the distance from the plotted 

data point P{n) to the nearest point on the curve {C{n)}, and jitter is the average of the 
absolute distances (not normalized). 

6 Results 

This is not a report on the results of the study on aging. What is of interest here is the 

consistency of a jitter measurement, that being our principal desideratum. Table 1 shows average 

jitter (of the four kinds) for each talker, at each age, saying each vowel. 

Jitter type 

Table 2: Average of the four kinds of jitter, per talker, per age, per vowel 

Even without statistical analysis, a few things are already clear: 

Old KS shows less jitter than young KS; 

Old AH shows more jitter than young AH; 

AH and KS show more jitter than JM; 

In many cases, amount of jitter is vowel-dependent. 
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7 Conclusions 

The pitch-epoch finding algorithm is adequate. It is large and computationally intensive, but 

that is not a problem on today's computers. The author would be happy to share code (some 

Fortran, some C) for this or any other part of the computations described above. 

For our purposes, there seems little to choose among the four measures of jitter described in 

this paper. Each is fairly consistent across a given condition, and they are fairly consistent with 

each other. We will continue investigating all four measures, and perhaps try others, on the rest 

of the collected data. 

It would have been good to make direct digital recordings rather than tape recordings. Wow 

and flutter are probably not affecting average jitter (the law of large numbers is in our favor), 

but they surely affect the variance of the jitter. (Variance measurements on the small amount of 

data in this study are not encouraging.) This makes it fruitless to try to measure jitter on small 

samples, such as one phoneme in one context by one talker. 
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How we do it: Automated Target Matching and Data Selection 

Procedure in Voice Sample Acquisition: (Jack Jiang, David Hanson, 

Jie Chen, Northwestern University Medical School, Chicago, IL, 
60611) 

Introduction: 

Inadequate, or contaminated samples are one of the common sources 

of error in clinical laboratory testing. For acoustic analyses 

of a vocal signal, it is important to obtain representative 

samples of the subjects natural range of frequency and intensity. 

Because the human voice can be voluntarily controlled within a 

wide range, it is essential to account for variables of frequency 
and intensity as well as other factors that may influence the 
sample. 

Frequency and intensity are two important factors, which we know 

have some effect on phonatory physiology. The results of vocal 

acoustic analyses such as jitter and shimmer vary with the 

frequency and intensity of phonation. Pabon (1991) demonstrated 

that jitter and shimmer may vary significantly with different 
combinations of frequency and intensity. Therefore when 

obtaining samples of phonation, frequency and amplitude of the 

phonation should be defined in a fixed range (which may be 

considered a target area in the subjects phonatogram) in order to 

reduce the variance of measures. One way of obtaining samples of 

defined frequency and intensity is to ask the subject to phonate 

at specific frequency and intensity while providing some 
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Figure 1 



JIA-2 

feedback. This has been called target matching (Hanson, et. al 

1990). However, we cannot assume that frequency and intensity 

are the only, or even the most important variables in vibratory 

biomechanics during phonation. 

In studies of speed quotient and open quotient of the vibratory 

cycle, measures of phonation that was matched to specific 

frequency / intensity targets were compared with spontaneous 

phonation of comparable frequency and intensity. It was found 

that the effect of matching specific frequency intensity targets 

influenced change in Speed Quotient(SQ) and Open Quotient(OQ) to 

a greater degree than these measures changed across the range of 

the subjects frequency and intensity. In other words the 

variable of target matched (versus spontaneous production) was 

greater than variation from the lowest to highest pitch and 

loudness. As seen in 

figure 1 (Hanson 1990), the open quotient and speed quotient of 

targeted phonation was significantly greater than for spontaneous 

phonation at the same frequency and intensities. 

Perturbations also appear to be effected by the effects of target 

matching. As the figure 2 shows, jitter and shimmer were also 

greater for targeted phonation than for spontaneous phonation of 

the same frequency and intensity. Therefore, the task of 

matching specific frequency / intensity targets for sampling 

phonation may introduce possible error into the samples if they 

are to be compared to spontaneous phonation. In this study, we 

report how in our voice laboratory we have attempted to reduce 
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this problem in sampling phonation by a target matching method. 

Methods: 

Target Matching Technology 

Figure 3 illustrates the data acquisition system which directly 

related with the sample selection in this study. An AKG Boom Set 

C-410 condenser microphone was connected to a Symetrix SX 202 

Pre-amplifier for recording the acoustic signal. The output of 

the pre-amp was connected to a root-mean-square(RMS) to voltage 

converter. The output of the convertor is proportional to the 

logarithm of the RMS of the acoustical signal. Both output of 

the RMS and the output of the preamplifier were sent to A/D board 

for digitizing. A Quest model 2800 Sound Pressure Level Meter was 

used for intensity calibration. 

RD-180T DATA RECORDER 

o o 

Intensity Target 

Area 

/ 

□ 

Frequency 

/ 

16 bit A/D/A 

■^■i 

SWITCH BOX 

PRE AMP RMS/DC 

EGG F/V 

Figure 3 

Frequency was obtained from the electroglottogram. A Glottal 

Enterprises (Rothenberg1s) SC-1B Single Channel EGG unit was 

used. The electrodes were placed on the either side of the 

thyroid alae. A frequency to voltage convertor was used for 

providing a voltage proportional to the frequency of the vocal 

fold vibration, which was equal to the fundamental frequency of 
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voice. 

A 33MHz 486 personal computer with two National Instruments 

AT-MI0-16F (12 bits 16 channel) A/D boards with aliasing filters 

was used for digitizing data. Labwindows 2.1 (National 

Instruments) was used for developing the data selection and 

analysis software. The sampling frequency, and the gain of each 

channel, was software selectable from a window environment. The 

data and the resulting files were saved in a pre-organized form 

so that data searching could be automated. 

The data files, synthesized tones, or a pre-digitized voice 

instruction were played back to an earphone or the field speakers 

through two 12 bits D/A channels of the same board and power 

amplifier. 

Before data acquisition, the examiner chose among the following 

parameters: a. Desirable range in intensity and frequency; b. The 

length of the segments needed; c. Sampling rate 

In our custom made software, data acquisition has two modes that 

are based on the triggering strategy. These are a manual mode 

and an automatic target matching mode. In the automatic target 

matching mode, there are two steps for the data acquisition: 

The first step was to determine the most comfortable intensity 

and frequency range of the subject. The subjects voice was 

recorded during casual conversation to obtain a spontaneous 

sample of speech for 20 seconds. The average frequency and 

average amplitude were then calculated from digitized frequency 

and amplitude contour data. 

The second step was to select the data automatically based on 

frequency and amplitude of the phonation. The most comfortable 

intensity and frequency of the subject was used to determine the 

center of the target. Target area was determined by adding, and 

subtracting a pre-set range to the most comfortable intensity and 

frequency. 

For target matched phonation, the subject was instructed to give 

a long and steady phonation. A synthesized target tone was 

played through a pair of speakers to the subject at the 

particular target. In addition to the target tone, a frequency 

contour and amplitude contour were digitized and displayed as x-y 

plots on the computer screen in real time for visual feedback, as 

shown in figure 4. 

In order to capture spontaneous phonation the subject was 

encouraged to produce phonation of different frequencies at 

different intensities. During data acquisition, the digitized 

data (3 or 4 channels in total) was saved as a temporary file on 

computer hard drive. If frequency and amplitude contours were 

both in the pre-selected range in which we desired to obtain a 

sample, and lasted continuously for a pre-selected duration, such 
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as 2 seconds 

(see figure 5), 

then the data 

of last steady 

section of 

phonation in 

temporary file 

was saved as a 

file with a 

given name. 

The rest of the 

data in the 

temporary file 

was discarded. 

If the 

frequency and 

the amplitude 

was not steady 

for 2 seconds, 

the program 

reset itself 

every 120 

seconds by 

rejecting all 

the data in the 

temporary file 

and starting a 

new one. 

Backward Data 

Acquisition 

One convenient 

feature of our 

system was its 

"backward" data 

acquisition. 

When the 

investigator 

wanted to 

acquire a 

section of 

patient voice 

data with 

specific characteristics, it was difficult, or tedious to do in a 

conventional system. Because the investigator did not always 

know ahead of time when the right combination of frequency and 

intensity would be achieved it was necessary to have the 

acquisition time long enough to wait for the sample that was 

desired. After the acquisition, it was necessary to search, what 

was sometime a huge file, for the desired sample, another tedious 

task. 

Frequency 

Target Range 

Amplitude 

Target Range 

Rejected segment 

Retained Segment 

(saved as a file) 

Frequency 

Contour 

Amplitude 

Contour 

Acoustic 

Signal 

Figure 5 

We automated this procedure by using the "backward" acquisition 
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mode. In this 

mode, the 

investigator 

Forwards Acquisition 

Backward Acquisition 

Automated Acquisition 

(Trigger point is 
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by target matching) 

Trigger 

Point 

Trigger 

Point 
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Retained Segment 

(saved as a file) 

the section 

he/she wants to 

acquire, and 

starts the 

acquisition in 

the background. 

From this 

moment the data 

is stored in a 

temporary file. 

As soon as the 

physician 

recognized the 

desired piece 

of data he/she 

wants, he/she 

can hit the 

RETURN key to stop the acquisition. The program will then find 

the end of the temporary file, and will backward trace to the 

length previously specified and will copy this section of data to 

the final data file(figure 6). 

The Double Buffer Technology 

To acquire large blocks of data at high speed, the double buffer 

acquisition technique was used. Usually, the hard disk of the 

computer was much larger than the RAM (Random Access Memory). 

But the disk access speed was too slow for high speed data 

acquisition. RAM was much faster for acquisition but of limited 

size for storage. The double buffer technique let us combine the 

best of the two. The maximum sample rate was almost as high as a 

single memory buffer mode, and its maximum size was only limited 

by the hard disk space. The method involves two memory buffers, 

allocated as a data buffer and a transfer buffer. The data 

buffer was used to receive data from the A/D converter at a fixed 

sample rate. It was configured as a cyclic buffer, i.e. if the 

buffer was full, the new data overwrote the previous data from 

the beginning of the buffer. The transfer buffer was half the 

size of the data buffer. When more than half of the data in the 

data buffer were new (i.e. have not been copied to the transfer 

buffer), the program signaled a flag that it was ready to copy 

the new half data buffer to the transfer buffer. The data in the 

transfer buffer were then written to a file in hard disk. The 

copy of half of the data buffer to transfer buffer and the write 

of transfer buffer to disk file do not interrupt the data 

acquisition carried on in the data buffer. This block transfer 

technique utilizes both the high access speed of RAM and the 

large memory of hard disk space to achieve the high speed 

acquisition of the large block of data. One caution in using the 
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"double buffer" technique was the possibility that desired data 

could be overwritten. If the program does not check the "data 

ready" flag of the data buffer often enough, the incoming data 

might overwrite the data that have not been copied to the 
transfer buffer and these data were permanently lost. One should 

test this for the data acquisition board and computer system to 
be used. The system we use (National Instruments MIO-16F Board 

with Gateway 486, 33MHz with 15 ms HD) can perform this reliably 
up to 100 K sample rate. 

Discussion: 

It has been reported that frequency and amplitude data can be 

obtained by a TMS 32010(Pabon 1991) DSP chip or a more user 

friendly TMS 320C30 digital signal processing board(Titze 1993). 

In our setup, the frequency and amplitude were both converted as 

analog voltages by a few IC chips. The rational for this was to 

avoid the technical difficulty of using a DSP chip and also to 

reduce the cost. The cost for develop both RMS/DC, and F/V 

converters was less $100. 

The RMS/DC(AD536) convertor has a 60 db dynamic range. The 

average time constant was determined by the value of capacitor. 

The response time was 0.1 second in out design. The error was <1% 

at the signal crest factor of 7. For the F/V convertor, the 

maximal input frequency was 1500 Hz. The response time of the 

F/V converter was set to 100 msec. The linearity error was than 

0.3%. 

Our preliminary experience was obtained with a target size that 

was lOHz x 5 db around the most comfortable frequency for a 

normal subject. It is obvious that the narrower the range, and 

the rougher the voice quality, the more difficult it will be 

obtain a sample of the desired range. The target range for 

pathological voices will probably need to be larger and will be 

determined experimentally in the future. Because of high 

frequency components (high crest value) of the acoustic voice 

signal, it is not accurate to use a F/V convertor to determinate 

F0 based on the acoustic signal. The fundamental frequency 

obtained from the EGG signal is more accurate. 

The effort of target matching effects several measurable 

characteristics of phonation. The mechanism for this is not 

known but is probably related to an increase in effort or strain. 

While spontaneous^phonation is a comfortable relaxed practiced 
procedure, matching voice to a specific frequency and intensity 

target is for most untrained subjects an unfamiliar difficult 

procedure. Muscle tension and mild tremor appear to be greater 

with such effort. This would account for perturbations that were 

higher in phonation produced while matching targets than they 

were in spontaneous phonation of similar frequency and intensity. 

This hypothesis seems to be supported by measures of increased 

speed quotient, open quotient, jitter and shimmer seen in target 

matching phonation samples. 
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To be able to obtain samples of specific desired frequency and 

amplitude and, at the same time to reduce the effort of target 

matching was a challenge for our studies of the vibratory 

physiology of the vocal folds during phonation. Our preliminary 

experience indicates that auditory feedback of the tone that we 

want the subject to match, is easier for most subjects that 

asking them to match a target from real time visual feedback. 

Encouraging the patient to produce a variety of samples, (" a 

little higher... a little louder11) and having the sampling 

program keep track of when the sample is in the desired range for 

capture, we expect to see less perturbation in acoustic 

recordings and physiologic measures. We are currently studying 

these phenomena. 

Reference: 

Pabon JPH (1991), Objective acoustic voice-quality parameters in 

the computer phonetogram, Journal of Voice, Vol.5, No.3 pp 203-

216 

Hanson DG, Gerratt BR, Berke GS (1990), Frequency intensity and 

target matching effects on photoglottographic measures of open 

quotient and speed quotient, Journal of Speech and Hearing 

Research, Volume 33, 45-50. 
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Summary 

The purpose of this paper is to present the results of a controlled study of the day-to-day 

variabilities of three acoustic parameters (jitter, shimmer, and normalized noise energy), and two 

electroglottographic (EGG) parameters (contact quotient and contact quotient perturbation) for 

vowels produced at three vocal efforts (soft, normal, loud). Data were obtained using a 

sophisticated bilinear interpolation pitch detection method. A repeated measures design required 
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subjects to produce the vowels /ae/ and /a/ five times a day over three days at each vocal effort 

level. The jitter, shimmer, and normalized noise energy (NNE) values from acoustic measures and 

Contact Quotient (CQ) and Contact Quotient Perturbation (CQP) values varied significantly 

among the three vocal effort levels. The clinical implication of this finding is that vocal effort 

must be controlled in order to obtain consistent clinical measures. Furthermore, day-to-day 

variability must be taken into account if representative measures are to be obtained for clinical 

use. 

Key Words 

Jitter, shimmer, normalized noise energy, contact quotient, contact quotient perturbation, 

vocal effort, pitch detection. 

Introduction 

Scientists have long known that clinical use of acoustic and electroglottographic (EGG) 

measures provides a convenient and non-invasive way to evaluate laryngeal function (Davis, 

1976; Aronson, 1980; Huang and Hu 1988). The three acoustic measures that have received the 

most attention in the literature as indicators of vocal function are cycle-to-cycle variations in 

fundamental period (jitter), cycle-to-cycle variations in peak-to-peak amplitude (shimmer) and 

normalized noise energy (NNE) (Hirano, Matsushita, and Hiki, 1976; Kasuya, Ogawa, and 

Kikuchi, 1986 ). There are four EGG measures that are also provide useful information about 

normal and pathological vocal function. The four EGG measures are contact quotient (CQ), 

contact quotient perturbation (CQP), cycle-to-cycle fundamental period variations from EGG 

signal (EGG-jitter), cycle-to-cycle peak-to-peak variations from EGG signal (EGG-shimmer) 

(Baken, 1987; Huang 1988; Huang, Minifie, & Lin 1992). The usefulness of such measures as 

indicators of vocal function is dependent upon the irreliability and the sensitivity of the measures 

to changes in vocalizations. Previous studies have looked at intrasubject variability of vocal jitter 

in voice signals from day to day (Linville, 1988; Haggins and Saxman, 1989), the relationship of 
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vocal jitter to voice intensity levels (Titze, Horii & Scherer, 1987), vocal jitter changes with the 

aging voice (Brown, Morris, and Michael, 1989), and differences in vocal jitter from vowel to 

vowel (Orlikoff and Huang 1991). Similar studies need to be done to indicate the relative stability 

of each of the acoustic measures and EGG measures used to evaluate vocal function. 

Accurate characterization of acoustic and EGG measures is essential not only in the 

evaluation of vocal pathologies, but also in the accurate modeling of the voice source for the 

speech synthesis (Fant, 1980). Two of the major questions about acoustic measures and EGG 

measures remain unresolved: 1) how do these measures change with changes in vocal effort level, 

and 2) what is the day-to-day variability in these measures ? One way to address these questions 

is to investigate intrasubject patterns of variation in a group of normal subjects. A better 

understanding of the variability of voice perturbation of normal speakers at different vocal efforts 

over time is needed, therefore, before the use of acoustic measures and EGG measures can be 

used appropriately as clinical measures for voice assessments. 

There are three purposes for this study: 1) to introduce a sophisticated bilinear 

interpolation pitch detection method, 2) to use the new pitch period detection method to evaluate 

the stability of acoustic and EGG measures of vocal function during changes in vocal effort level, 

and 3) to evaluate the stability of such measures from day to day. 

The Method of Analysis 

A. Algorithm and Terminology 

It is crucial to have an accurate cycle-to-cycle pitch period detection method, because 

nearly all aspects of acoustic and EGG measures are based on the accuracy of pitch detection. 

For example, since perturbation measures rely on the accurate identification of each pitch period, 

measures of jitter and shimmer are dependent on the precision of pitch period detection. 
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Similarly, the detection of glottal noise requires an accurate pitch period marker in order to match 

adjacent waveshape cycles. 

Various FO extraction methods have been summarized by Hess (1983). They can be 

classified in two major categories: 1) event-detection methods, such as the peak-picking and zero-

crossing methods; and 2) short-time averaging methods, such as autocorrelation, minimal 

distances, amplitude magnitude difference function, cepstral analysis, and harmonic compression. 

Milenkovic (1987) found that greater reliability and accuracy could be obtained by matching the 

entire waveshape across adjacent cycles rather than by identifying isolated events, like zero-

crossing and peak-picking. Kasuya (1986, 1989) developed a rather accurate pitch detection 

method based on a cycle-to-cycle amplitude magnitude difference function (AMDF). This pitch 

detection method compares the sampled data points for an entire waveform with those from 

adjacent cycles. 

Since the measures of jitter, shimmer, NNE, CQ, and CQP are based on the cycle-to-cycle 

similarity of the wave form, accurate determination of the pitch period is of crucial importance. 

This paper presents a new method for determining pitch periods, from which jitter, shimmer, 

NNE, CQ and CQP are measured. The method incorporates a bilinear interpolation procedure 

into the average magnitude difference function (AMDF) to evaluate the cycle-to-cycle waveform 

similarity in sustained vowel utterances. This method was selected based on experiments with 

synthetic speech showing that the method performs better than several other methods taken for 

comparison. The method of bilinear interpolation of sample points on the Amplitude Magnitude 

Difference Function (AMDF) is shown in figure 1. The pitch markers (qi,q2^3- .Qn-l^n or 

C1*C2>C3»--'Cn-l'Cn) shown at the top of figure, are estimated using an automatic method based on 

zero crossings of the vowel wave form. The method then locates the pitch boundary on the basis 

of the AMDF to indicate the beginning of each pitch period. In this case, six points, shown at the 

bottom of figure, around a primary dip in the AMDF are separated into two groups; one group 

includes a minimum AMDF point, while the other includes the second minimum point. Two lines 
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are obtained from the two groups on the basis of the least mean square criterion. The point where 

two lines cross is regarded as the real pitch boundary, the beginning of a real pitch period 

(PI,P2,P3,..,Pn-l.Pn) 

A } I /I. A A .. 

A 

UJ 

a 

D 

TIME 

Figure 1. Schematic illustration of the pitch detection method with bilinear interpolation 

or the average magnitude difference function (AMDF). 

For a sequence p(n), n=l,2 N, the perturbation quotient PQ (%) is defined as 

PQ = 100_vy' 
+i h N-k 

k*p(n+m) 

-1) 

(1) 

where k is the length of moving average (an odd integer greater than one) and m=(k+l)/2. In our 

system k=5 and m=3. If p(n) is the pitch period of acoustic signal, then PQ is the pitch period 

perturbation quotient (jitter), and if p(n) is the peak-to-peak amplitude of acoustic signal, then PQ 
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is peak-to-peak amplitude perturbation quotient (shimmer). If p(n) is the contact quotient 

sequence of the EGG signal, then PQ is the contact quotient perturbation quotient (CQP). 

These jitter and shimmer values are measured from the pitch period and peak-to-peak 

amplitudes, respectively. After computation of the perturbation measures, the pitch period of 

each glottal vibration included in the count was displayed. More than 50 cycles were used for 

each perturbation analysis as supported by Titze (1987). Only segments that had pitch period 

fluctuations within 10% in either a positive or negative direction of the mean pitch period were 

analyzed. This criterion was used so that only very steady wave form segments would be 

analyzed for all subjects, thus minimizing variability due to selection of cycles for analysis. If no 

segment consisting of at least 50 cycles could be found to fit this criterion, no perturbation values 

were computed for that vowel production. Only a few of the normal vowel prolongations were 

rejected by following this criterion. This criterion is more problematic in analyses of pathological 

voices because many abnormal voice have relatively few stable segments with pitch period 

fluctuations within 10% of the mean pitch period. Such extremely variant voices cannot be 

analyzed. Accuracy of the new pitch detection method will be discussed with synthesized steady 

vowels later. 

With respect to the EGG-jitter and EGG-shimmer, Haji (1986) found that the EGG-jitter 

was nearly equivalent to the jitter and shimmer obtained from acoustic signal, so that the EGG-

jitter and EGG-shimmer data are not reported in this paper. The CQ measure from EGG signal 

provides unique information about vocal fold behavior that is, for the most part, invisible to other 

available techniques (Baken 1987; Orlikoff and Baken 1990). The CQP measure provides 

precise information about the rate, symmetry and regularity of the vocal fold contact phase during 

vocal fold vibration (Huang, Minifie and Lin 1992, 1993). It is for these reasons that the CQ, 

CQP measures were chosen in our study. Rothenberg (1988) has suggested the use of variable 

baseline crossings with interpolation of a criterion level to demarcate the EGG contact phase. In 
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the present study, a baseline of 25% of the peak-to-peak EGG amplitude of each wave is 

associated with the EGG minimal contact phase and is selected for measuring the CQ and CQP 

The method of noise energy measurement used in this experiment provides more insight 

into perturbation measurement. The relative magnitude of noise included in the voice signal is 

evaluated using an acoustic measurement NNE (normalized noise energy) described by Kasuya 

(1986). We have chosen to use the normalized noise energy measure because it can differentiate 

among normal and pathological voices more sensitively than does the harmonic-to-noise ratio 

(Kasuya 1993; Hirano 1989). An adaptive comb filtering method is used in NNE for estimating 

vocal noise in normal and pathological voices. (This procedure was initially investigated for the 

enhancement of degraded speech due to additive white noise.) The NNE (dB) is given by the 

equation: 

NNE = lOlog " , ,2+BL (2) 

where w(n) and x(n) are respectively an estimated vocal turbulent noise component and an 

original voice waveform, and BL is a constant for compensating for the amount of noise energy 

removed by the comb filter. 

B. Test Signals 

The accuracy of the pitch detection method was tested using periodic synthesized signals 

without additive noise, which were produced by the following equation: 

M Ink 
£^ <D(A)) (3) 
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where A(k) is the amplitude of k-th harmonic component which simulates a vowel /ae/ as in "bat", 

<X>(k) is the phase of k-th harmonic component, M is the number of harmonics, and T is the 

normalized pitch period (points). In our system, <D(k>=0 and M = 23. The T is defined by the 

following equation: 

T=F,xP (4) 

where Fs is the sampling frequency, and P is the pitch period. For simulating a child voice, T is 

allowed to vary from 133 to 134 points with a step 0.2, which corresponds to a change from 

3.325 to 3.35 ms. For simulating a female voice, T is allowed to vary from 174 to 175 points, 

which corresponds a change from 4.35 to 4.375 ms. Similarly, for simulating a male voice, T is 

allowed to vary from 333 to 334 points, corresponding to a change from 8.325 to 8.35 ms. 

C Accuracy of the pitch detection methods 

Results showing the accuracy of the pitch detection method, with and without 

interpolation, are provided in Table 1. Here, two interpolation methods on the AMDF were 

employed in order to determine which method provides the more precise pitch period extraction. 

The two methods are: parabolic interpolation, and interpolation with bilinear approximation. The 

measures obtained using these interpolation methods were compared to measures derived when 

no interpolation was employed. 

The results obtained from these test signals, which include a constant pitch periods from 

integer multiples and non-integer multiples, allow us to draw the following conclusions about 

pitch period detection. First, the standard deviations of data obtained via the parabolic and 

bilinear interpolation methods were always smaller than the standard deviation when no 

interpolation was used. The second observation is that the bias of the interpolation methods was 

generally smaller than the bias obtained with the "no interpolation" method. Third, the bias of 

bilinear interpolation method was always smaller than the bias obtained with the parabolic 

method. Thus, it appears clear from Table 1 that the bilinear method is superior to the parabolic 
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method. Also, Table 1 indicates that both of the interpolation methods are better than the no 

interpolation method. 

TABLE 1. Comparison of the accuracy of pitch extraction, with or without 

interpolation. Bias is the difference of an average of measured pitch periods from 

the actual value, and SD is the standard deviation of measured pitch period values. 

In order to estimate the sensitivity of the bilinear interpolation method of pitch 

measurement, white-noise signals were scaled appropriately and then added point-for-point with 

the above periodic synthesized signals y(n). As the signal-noise ratio (SNR) decreased, reflected 

by increasing the amount of white noise added point-for-point on synthesized signals, jitter and 

the value of normalized RMS error of the pitch period clearly increase, as shown in figure 2. also, 

it is clear that variations in jitter imposed by noise are relatively small when SNRs are more than 
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45 dB. These data provide support XQ 01 0/ 

for the use of a bilinear interpolation 

of the AMDF as a pitch detection ^ § 

algorithm. It appears to be an 2^ 

accurate method for pitch period 

measurement. ^ 

O 

Therefore, in this paper, pitch y 

detection in both acoustic & EGG co 

signals was obtained by incorporating p£ 

bilinear interpolation of sample data 

points on average magnitude 

difference function. Perturbation 

measures were obtained using a 5-

point moving average procedure. 
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Fifurt 2. Jitter, normalized RMS and bias errors as a function of signal-to-noise ratio 

(SNR) of synthesized signals with white noise. 

Voice Perturbation Measurements 

The next investigation was to examine the influence of three vocal efforts on the measures 

of jitter, shimmer, NNE, CQ, and CQP over time. Three male subjects pronounced the sustained 

vowels /ae/ and /a/ at three vocal efforts (soft, normal and loud) five times a day on three different 

days. Jitter, shimmer, NNE, CQ and CQP were measured from each vowel sample. 
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While these acoustic and EGG measures may be easy to obtain, useful in analysis of the 

voice disorders and helpful in measuring progress during therapy, it is important to understand 

how these measures change during different vocalization conditions. Hence, our interest is how 

these measures change during voice production at different vocal effort levels. 

A. Subjects 

Subjects were three normal male adult subjects with no history of voice disorders, or 

present complaint of voice disorders. All subjects were in good health on each day of testing with 

no history of audiological, neurological or chronic respiratory disease. 

B. Stimuli 

We manipulated vocal effort level by having subjects produce the vowels /ae/ and /a/ at 

"soft", "normal", and "loud" vocal levels. Using a repeated measures design, each of three adult 

male normal talkers produced five replications of each vowel, at each vocal effort level, on each 

of three different days. These utterances were produced under two different conditions: 1) 

spontaneous vowel productions, and 2) imitative vowel production. 

Spontaneous vowel production: Each subject was first directed to sustain the vowel /ae/ as in 

"bat" five times with each utterance lasting for more than 3 seconds at normal effort. Then, the 

subject was asked to repeat the sustained vowel five times again with each production lasting 

more than 3 seconds, at a soft vocal effort. Similarly, five replications of vowel were obtained at 

loud vocal effort. The same procedure was used to obtain tokens of the vowel /a/ at each of the 

three vocal effort levels. 

Imitative vowel production: Each subject was required to sustain each vowel (/ae/ and /a/) in 

imitation of synthetically generated vowel tokens at each of the intensity levels: loud=75 dB SPL, 

normal=72 dB SPL, and soft=67 dB SPL. 
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Each subject for this experiment was seated in a sound-proof room (IAC 1200) and 

comfortably positioned in a head rest so that a condenser microphone (SONY ECM22-P) was 

positioned at a constant microphone-to-mouth distance of 10 cm. A throat-contact microphone 

was placed over the thyroid lamina to obtain electroglottographic signals. During the recording 

of both acoustic and EGG signals into a computer, no attempt was made to control fundamental 

frequency at any of the vocal efforts. 

Each vocal token produced by the subjects in this experiment was digitized at a sampling 

frequency of 22050 Hz per channel with an accuracy of 16 bits/sample, and analyzed by using the 

software: Voice Evaluation and Therapy (VET 2.00) from Tiger Electronics (Huang, Minifie & 

Lin 1992). Only the middle portions of the vowel at each vocal effort were used for analysis. 

C Results 

The results of this experiment can be seen in the following series of figures. Figure 3 

shows the results for the vowel /ae/ produced in a natural, spontaneous manner. Each of the bar 

graphs shows the means and standard deviations of the data obtained for each vocal effort level 

condition: soft, normal, and loud. For example, it can be seen in Figure 3(a) that jitter decreases 

with increasing vocal effort level. Similarly, shimmer reduces with increasing vocal effort level 

(Figure 3(b)). Please note that we have used the acronym NNE (Kasuya 1986) to represent 

normalized noise energy (or what we have referred to above as glottal noise energy). Obviously 

this graph has to be interpreted in light of the fact that noise energy is measured in relation to the 

amplitude of the harmonic energy in the vowel. Therefore, the minus values indicate how many 

decibels below the signal energy is the level of the noise energy (e.g., a smaller minus value 

indicates a larger amount of noise than does a larger minus value. Figure 3(c) shows that as vocal 

effort level is increased, that the relative amount of noise in the vocalization decreases. 

If we look at the Contact Quotient graph (Figure 3(d)), it can be observed that at loud 

levels of phonation, the vocal folds are closed for a considerably longer percentage of each vocal 
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Figure 3. Jitter, Shimmer, NNE, CQ, and CQP from a sustained vowel /ae/ as a function of three 
vocal efforts in the spontaneous vowel production. 

Spontaneous 

Vowel /a/ 

Production 

(d) (e) 

Figure 4. Jitter, Shimmer, NNE, CQ, and CQP from a sustained vowel /a/ as a function of three 
vocal efforts in the spontaneous vowel production. 
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Figure 5 Jitter, Shimmer, NNE, CQ, and CQP from a sustained vowel /ae/ as a function of three 

vocal efforts in the imitative vowel production. 
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Figure 6 Jitter, Shimmer, NNE, CQ, and CQP from a sustained vowel /a/ as a function of three 

vocal efforts in the imitative vowel production. 
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cycle than during the normal and soft levels of phonation. And in the contact quotient 

perturbation graph (Figure 3(e)) we see that the percentage of contact quotient perturbation 

decreases with increasing vocal effort level. 

Figure 4(a)-(e) shows the data obtained from spontaneous productions of the vowel /a/. 

While the values of the various measures may differ slightly from those obtained for the vowel 

, the patterns of change are rather similar. 

TABLE 2. Statistical analysis of acoustic and electroglottographic measures at 

three vocal effort. The "*" indicates the significant difference at 0.05 level, (ah = /a/ 

natural, spontaneous, ae = /ae/ natural, spontaneous, ahm = /a/ produced in 

imitative of a computer stimulated /a/, aem = /ae/ produced in imitative of a 

computer stimulated /ae/) 

Figure 5 shows the vowel /ae/ produced at different vocal effort level conditions, in 

imitative response to target acoustic models produced by voice synthesis to reflect vocal effort 

levels. The target vowels for the loud, normal, and soft conditions were synthesized at 75, 72, 

and 68 dB SPL, respectively. Similar patterns of changes are observed in these imitative 
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vocalizations in comparison to those obtained during spontaneous vowel productions during 

changes in the vocal effort level. Figure 6 shows similar results for the /a/ vowel produced at 

different vocal effort levels in imitative response to the acoustic targets produced by vowel 

synthesis. 

Shown in Table 2 are the results of numerous analyses of variance applied to the measures 

of jitter, shimmer, normalized noise energy, contact quotient, and contact quotient perturbation. 

Perhaps the most important finding from this study is related to changes occurring from changes 

in vocal effort level. This table shows that in all cases, changes in vocal effort level caused 

significant changes in the three acoustic measures and in both of EGG measures. 

Discussion 

In this paper, we have discussed the development of a computer program for the 

measurement of vocal pitch perturbation, peak-to-peak amplitude perturbation, glottal noise 

energy, contact quotient, and contact quotient perturbation (jitter, shimmer, NNE, CQ, and 

CQP), based on a newly pitch detection method. Both parabolic and bilinear interpolation 

methods of the AMDF provide an obvious advantage for the estimation of pitch period when 

compared to peak picking and zero crossing procedures. If a relatively low sampling rate is used, 

such as 11025 Hz, interpolations will provide an even greater advantage over these "no 

interpolation" procedure. 

Our primary interest was to investigate the influence of vocal effort on vocal perturbation, 

glottal noise, CQ, and CQP measurements and to study the day-to-day variability of each 

influence. During our "every other day" sampling procedure for obtaining the jitter, shimmer, 

NNE, CQ, CQP values associated with the three vocal efforts, we observed that, in most cases, 

the loud vocal effort produced the lowest values. These results suggest that it is very important 

to control vocal effort when analyzing vocalizations, we assume that the same conclusion would 

apply to vocalization produced by normal and pathological subjects. On the other hand, it 
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appears reasonably to analyze only very steady utterances from subjects in order to get a better 

approximation of a speaker's typical perturbation value. This criterion may make it impossible to 

measure the vowel productions of some pathological speakers. As Titze (1987) has suggested, it 

appears best to use a voice sample at least 20-30 cycles in duration when measuring jitter and 

shimmer in normal speakers. Whether or not this is the case with some, or all, pathologic 

speakers is uncertain. What is clear is that a longer sample duration is needed in order to obtain a 

more stable estimate of perturbation measures. Certainly, longer vowel duration is desirable, but 

at a cost of increased processing time. The results of the present study suggest that more vowel 

repetitions are needed to determine a speaker's typical production of a given vowel. The first 

vowel produced during a given recording session usually yields the highest amount of variability, 

presumably due to psychological influence. 

When tokens are recorded in a high quality digital audio tape recorder or digitized directly 

into a computer prior to analysis it appears to have a noticeable effect on the measures obtained. 

The take-home message from this experiment is that if these acoustic and EGG measures 

are to be taken in the clinic, and used to compare the patient's performance from one point in time 

to another, it is important to have the vocalizations produced at the same vocal effort level. 

Secondly, Table 2 shows that in most cases there was variability in these measures from day to 

day. Thus, it may be important to obtain recordings from several days in order to obtain a good 

indication of "average" subject performance. Finally, it should be pointed out that this experiment 

was designed to investigate how these measures varied during vocalizations produced by normal 

talkers, under the prescribed conditions It would be of considerable clinical importance to 

determine whether patients with voice disorders produce similar changes. Further investigations 

with both normal and pathologic speakers should begin to provide an answer. 
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Abstract 

This paper compaxes four spectral analysis techniques which are now available in com 

mercial software packages: the short-time Fourier transform (STFT); two autoregressive 

methods, the autocorrelation and modified covariance methods; and a generalized time-

frequency representation based on the Wigner distribution which uses a cone-shaped kernel 

(TFRCK). With the TFRCK, good time and frequency resolution can be obtained simul 

taneously. This desirable feature is not possible with any of the other three methods. In 

addition, when white Gaussian noise is added to the signal, it is shown that this method is 

able to provide an unbiased estimate of the signal without noise. 

1 Introduction 

Over the past decade, there have been significant advances in the methods available for the 

analysis of speech and other complex, time-varying signals. Several of these methods are now 

widely available to researchers through inexpensive software packages [4]; [9]; [6]. The choice 

of the analysis method has implications for the results obtained, but these implications are 

not obvious to researchers and clinicians who wish to analyze the characteristics of speech 

and other time-varying complex signals. 

One of the most widely used approaches is the spectrogram, evaluated using a short-time 

Fourier transform. This technique has been found suitable for some applications, but it may 

not accurately characterize the signal under analysis. In particular, high resolution in both 

time and frequency is not possible. 

In an effort to improve the analysis flexibility and to provide more accurate time-varying 

spectral estimation of speech signals, alternative techniques based on models of the speech 

production system have been developed. One example is autoregressive modeling of speech, 

where the signal is represented by an all-pole filter [5]. This quasi-stationary approach gives 

better results than the STFT for speech signals but is still inadequate because the signals 

analyzed (e.g., speech) are often nonstationary. 

As a consequence of these limitations, there has been increased interest in the use of 
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spectral analysis methods which provide greater time-frequency resolution than conventional 

spectral methods. A generalized time-frequency representation where the kernel has the form 

of a cone has been developed in an attempt to improve the results of the previous methods 

[12]. In this nonstationary approach, time and frequency resolution are independent. 

In this paper, the accuracy and usefulness of four spectral estimation methods are com 

pared for synthetic signals and natural speech. The algorithms considered are the STFT, 

two techniques based on autoregressive modeling and the TFRCK. 

2 The class of the generalized time-frequency repre 

sentations 

Cohen's class of generalized bilinear time-frequency representations [2] offers a unified ap 

proach to the various time-frequency analysis methods. A generalized time-frequency rep 

resentation Cx(*,/,<£) of the signal x{t) with kernel ^(t,r) is [1] 

C,(«, /. 4) = f^ P" 4(t - t\ r)x(t' + !)*•(!' - I)c-^TA#rfr. (1) 

This representation can be interpreted as being the Fourier transform of the convolution of 

the signal correlation *(«' + §)*•(«' - \) with the kernel <f>(t,r). In the frequency-domain, 

this relation can be expressed by 

~ £ h (2) 
J-oo J-

where X(f) is the Fourier transform of x(t) and ♦({,/) is the two-dimensional Fourier 

transform of <f>{t,r). Even though this representation is not always positive, it is considered 

as a time-frequency representation for specific choices of the kernel. Each of these represen 

tations is characterized by a special form of the kernel function, so that the properties of a 

distribution are related to the properties of its kernel. In this paper, two distributions will 

be analyzed - the short-time Fourier transform and a representation where the support of 

the kernel has the form of a cone. 
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2.1 The short-time Fourier transform 

The short time Fourier transform belongs to the class of the generalized time-frequency 

representations [3]. The interpretation from the generalized time-frequency point of view 

allows us to find ways to try to overcome these limitations. 

The spectrogram evaluated by a STFT is expressed by: 

where h(t) is a real and symmetric window. The kernel of the STFT takes the following 

form: 

)h{t-T-), (4) 

The supports of the kernel in each of t and r directions are proportional to the duration 

of the window. Thus, the generalized time-frequency representation of the spectrogram 

shows that smoothing is introduced by the kernel in both time and frequency. The kernel 

of the STFT (Eq. (4)) depends on t. When it is convolved with the signal correlation (Eq. 

(1)), time smoothing appears. To increase time resolution, the support of the kernel in the 

t direction has to be decreased. To realize that, the window duration has to be reduced 

which will reduce the support of the kernel in the r direction. Since the Fourier transform 

is performed in the r direction, frequency resolution will decrease. Thus, increasing time 

resolution will decrease frequency resolution. Using a similar reasoning, it could be shown 

that time resolution will be reduced if frequency resolution is increased. Ideally, to overcome 

this tradeoff, kernels should be designed to be separable functions in t and r, so that altering 

the support of the kernel in one dimension will not affect the support in the other dimension. 

Although the STFT has many drawbacks, it continues to be used widely. Among the 

class of the generalized time-frequency representations, only the STFT always gives positive 

values for the power spectral density. Thus, it is able to represent the energy distribution 

of the signal being analyzed. In addition, the STFT is computationally efficient so that 

real-time implementations are possible. 
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2.2 Quadratic time-frequency representations 

The concept of generalized time-frequency representations makes it possible to understand 

the reasons behind the limitations of the spectrogram and how to overcome these limitations. 

Eqs. (1) and (2) show that different representations can be generated by specifying different 

forms for the two-dimensional kernel. 

To obtain good time and good frequency resolution simultaneously, an obvious choice 

for the kernel is one which has the narrowest possible width in time and in frequency, so 

that when it is convolved with the signal correlation (Eq. (1)) and the spectrum correlation 

(Eq. (2)), it does not introduce any smoothing. The function that has the narrowest width 

is the Dirac delta function. With <f>{t,r) = 6(t)y the two-dimensional Fourier transform of 

this kernel is $(£,/) = 6(f). This kernel gives the sharpest possible time and frequency 

resolution. The resulting time-frequency representation is the Wigner distribution. 

While this representation appears to provide an ideal solution to the time-frequency 

resolution tradeoff of the spectrogram, it has serious limitations. When monocomponent 

signals are analyzed with the Wigner distribution, the results are satisfying, and frequency 

changes are tracked correctly without any smearing. However, with multicomponent signals, 

(such as speech), the Wigner distribution introduces interfering cross terms, artifacts which 

make the interpretation of the results very difficult. The presence of cross terms is due to 

the nonlinear nature of the Wigner distribution. To be able to use the Wigner distribution 

to analyze speech, further processing is therefore essential. 

2.3 Time-frequency representation with cone-shaped kernel 

In an effort to reduce the interference terms of the Wigner distribution while simultaneously 

trying to preserve its desirable properties, sophisticated smoothing functions have been de 

veloped. These functions are able to reduce the undesirable effects of the interference terms 

of the Wigner distribution without sacrificing its high-resolution property. A generalized 

time-frequency representation, based on the Wigner distribution using a cone-shaped ker 

nel, was proposed for nonstationary signals [12]. This distribution overcomes the limitations 
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of the spectrogram and the artifact problem of the Wigner distribution and has been shown 

to provide high resolution in both time and frequency while simultaneously attenuating the 

interference terms [8]. The support of the kernel used has the form of a cone in the t-r 

plane. Mathematically, the cone kernel is defined as [12] 

0 otherwise, 

where a is a parameter used to specify the slopes of the cone and g(r) a tapering window. 

The width of the kernel along the r-axis specifies the frequency resolution which is 

inversely proportional to the length of the window T. The width of the kernel along the 

t-axis is independent of T which makes the time and frequency resolution independent. 

Interference terms are present in many generalized time-frequency representations. However, 

using a cone kernel, the interference terms are attenuated significantly [10]. 

Some specific properties of the time-frequency representation using a cone kernel are 

examined in [10]. In particular, to satisfy the finite time support property, a time-frequency 

representation should be zero whenever the signal is zero. This property is violated with 

most time-frequency representations when smoothing is performed in the time direction in 

an effort to attenuate the interference terms. An example is the spectrogram, where due to 

the smearing in time, the values are not always zero when the signal is zero. In contrast, 

this property is satisfied with the representation using a cone kernel. In addition, if the 

signal contains white noise, the representation using a cone kernel is able to produce an 

unbiased estimate of the same representation of the signal without noise [10]. In other 

time-frequency representations, the power spectral density of the noise is usually added to 

the time-frequency representation of the signal. Nonnegativity is not preserved in the cone 

kernel representation or in the Wigner distribution. Therefore, these representations cannot 

be considered as energy distributions but serve as high resolution analyses of signals in time 

and frequency. Thus, the representation with a cone kernel is suitable for analyzing speech 

signals where there is a need to resolve two closely-spaced formants, or to track a rapidly-

changing spectral peak. Simultaneously, good estimates of the time of occurrence of events 

are possible with this technique. 
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3 Autoregressive spectral estimation 

In an attempt to improve the resolution and spectral fidelity of the FFT, particularly for 

short data segments, several alternative spectral estimation techniques have been developed. 

These techniques represent the data to be analyzed by a model and are termed parametric 

methods. 

Many problems associated with the FFT axe attributed to the assumptions made about 

data falling outside the measurement interval. The finite data sequence may be viewed as a 

sequence of infinite length multiplied by a finite length window. The use of only these data 

implicitly assumes the unmeasured data are zero, which is usually not the case. 

Alternative spectral estimation procedures are designed to alleviate the inherent limita 

tions of the FFT approach. Rather than assuming that the data outside the window are 

zero, a more reasonable assumption is made. The process which generated the data can be 

modeled, and the model is then used to improve the estimate of the data falling outside the 

window. 

Many approaches exist to determine the model parameters. Two particular cases are 

considered here, the autocorrelation method and the modified covariance method. Details 

about these two methods can be found in [7]. 

3.1 Weaknesses of the autoregressive techniques 

As with the STFT, the autoregressive techniques use a quasi-stationary approach to analyze 

nonstationary signals such as speech [11]. As a consequence, the exact time of occurrence of 

spectral details cannot always be determined. 

A serious problem with the autoregressive spectral estimation technique is its sensitivity 

to the addition of noise to the signal [5]. For the case of two sinusoids in noise, the resolution 

decreases as the signal to noise ratio decreases [5]. In addition, the spectral peaks are 

broadened and displaced from their true positions. This noise sensitivity occurs because the 

autoregressive technique uses an all-pole model to represent the signal, but this model is 

not correct when the signal is embedded in noise. 
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4 Results and discussion 

A synthetic signal in clean and noisy conditions and a speech signal are used to evaluate 

the performance of the four algorithms discussed above, as implemented in the CSRE2 

speech analysis system [4]. The speech token was chosen to have characteristics which are 

traditionally hard to identify, including closely-spaced formants, rapid formant transitions, 

and brief components such as consonant bursts. 

In each figure, the top window shows a time-frequency representation of the signal and 

the middle window displays the time-domain waveform. The bottom-right window shows 

the spectral slice at the time step where the marker in the top window is positioned and the 

bottom-left window displays the data used to calculate this spectral slice. 

4.1 Combination of three sinusoids 

To study time resolution and frequency resolution simultaneously, a signal consisting of 3 

sinusoids was synthesized at a sampling frequency of 10 kHz. The first 500 ms comprised a 

1 kHz tone added to a 1.25 kHz tone; the next 500 ms comprised a 3 kHz tone only (i.e., the 

3 kHz tone did not overlap in time with the other two tones). For the noisy signal, a white 

Gaussian noise was added with 0 dB SNR. 

The synthesized signal was analyzed with each of the different algorithms. Fig. 1 displays 

a narrowband spectrogram and Fig. 2 shows a wide band spectrogram of the same signal. 

The spectrogram was evaluated with a STFT. Fig. 1 shows that the 1 kHz tone and the 

1.25 kHz tone are resolved in frequency but that they appear to overlap in time with the 3 

kHz tone. Time resolution was better in Fig. 2 than in Fig. 1 but the separate tracks of the 

1 kHz and 1.25 kHz tones are obscured (i.eM frequency resolution is much worst than in Fig. 

1). Thus, the STFT may hide some characteristics of the signal (e.g., the two low-frequency 

tones cannot be distinguished in the wideband spectrogram) or produce others which do not 

truly exist (the narrowband spectrogram gives the illusion that the 3 tones overlap in time). 

Analysis with the autoregressive technique using the autocorrelation method generates 

2CSRE is a registered trade mark of Avaaz Innovations Inc. 
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results similar to those for the STFT. A short window gives good time resolution at the ex 

pense of good frequency resolution, while the opposite happens with a long window duration. 

No results were obtained for this signal with the autoregressive technique using the modified 

covariance algorithm, because this algorithm suffered from ill-conditioning with this signal. 

A generalized time frequency distribution with a cone-shaped kernel was used to analyze 

the same signal, with the results displayed in Figure 3. As can be seen, this method provided 

good time resolution with no loss of good frequency resolution. The track of the 1 kHz tone is 

clearly distinguishable from that of the 1.25 kHz tone. There is no overlap in time between the 

low frequency tones and the 3 kHz tone. Interfering cross terms appear for a short duration 

during the transition but they are attenuated by about 30 dB compared to the power of 

signal. With multicomponent signals, the distribution using a cone kernel appears to be able 

to provide the excellent time-frequency resolution of the Wigner distribution, without the 

interfering cross terms in time or in frequency. Among the four techniques considered, this 

approach yields the most lucid representations of the signal. Timing information as well as 

the spectral content of the signal can be estimated with almost no error. 

White noise at 0 dB SNR was added to the signal. The results of the autoregressive 

techniques were the worst, the noise heavily distorted the signal and it was not possible to 

distinguish the signal components. The results of the autoregressive techniques were not 

shown for this case, instead, the comparison is done between the best representation among 

the three conventional methods and the TFRCK. The results of the analysis with the STFT 

are shown in Fig. 4. The display is dominated by the power spectral density of the noise 

in the composite signal. The spectral slice centered at time 592.1 ms and displayed in the 

bottom right window shows the high level of the noise. Clearly, it is difficult to locate the 

location of the tone in this display. 

The results obtained with the TFRCK are shown in Fig. 5. As can be seen, there is no 

noise around the tracks of the tones and the power spectral density of the noise was not added 

to the spectrum of the signal as occurred in the case reviewed above. This result confirms 

that the TFRCK can provide an unbiased estimate of the signal even in the presence of noise 

[10]. 
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4.2 Speech signal 

With speech signals, the results with the STFT were the worst. The results of the two 

autoregressive methods were very similar for the analysis window sizes used. Therefore, to 

be concise, the comparison was carried between the autocorrelation method and the TFRCK. 

The analysis parameters in each case were chosen to provide the best representation of the 

signal for a given method. Fig. 6 and Fig. 7 show the results of analyzing the bisyllabic 

/agil/ with the autocorrelation method using a short window and a long window respectively. 

In Fig. 6, the frequency resolution is not good, the 3rd and 4th formants of the /il/ portion 

are not distinguishable. In contrast, frequency resolution is improved in Fig. 7 but time 

resolution is reduced, the width of the /g/ is wider in Fig. 7 than in Fig. 6. In addition, 

in Fig. 7, the beginning of formant transitions from the /g/ to the /il/ is obscured and 

compared to Fig. 6, it is clearly seen that the onset of the formant transitions is shifted 

towards the release of the /g/. 

The results with the TFRCK algorithm are shown in Fig. 8. Frequency resolution is good 

in this case and the tracks of the 3rd and 4th formants in the /il/ portion can be seen clearly. 

Simultaneously, good time resolution is preserved, the width of the /g/ and the beginning of 

the formant transitions are defined as well, if not better than in the previous analysis when 

a small window was used. For more detailed analysis, the "ZOOM IN" feature of CSRE was 

used to examine the portion of the displays around the /g/ release segment. This is shown 

in Figs. 9, 10 and 11 for the autocorrelation method with short and long analysis intervals 

and for the TFRCK respectively. In Fig. 9, the 2nd, 3rd and 4th formants are difficult 

to discern. While in Fig. 10 the formant tracks are distinguishable, the release is clearly 

longer in duration than in the previous case. The beginning of the release in this display 

is misaligned relative to the corresponding portion in the time-domain waveform shown in 

the middle window. Because of the poor time resolution in this case, an error of about 

10 ms could be made in locating burst onset from the time-frequency display of Fig. 10. 

Fig. 11 shows that the TFRCK both separates the formants and simultaneously correctly 

estimates the duration of the release relative to the time-domain waveform. For this natural 

speech example, the TFRCK is therefore able to provide good time and frequency resolution 
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simultaneously which was not possible with the other techniques considered. 

5 Conclusion 

Among the spectral analysis techniques considered, the TFRCK approach was found to 

provide superior time-frequency resolution and appears to be better suited for the analysis 

of nonstationary signals. Good time resolution was obtained without degrading frequency 

resolution. In contrast to other spectral analysis techniques, when the signal was degraded 

by noise, this approach continued to provide an unbiased estimate of the signal without noise. 

The time-frequency representation with a cone kernel thus reveals important characteristics 

of speech more accurately than the other methods considered. 
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Figure Captions 

Fig. 1: Narrowband spectrogram of the synthesized signal. It consists of 3 tones, a 1 kHz 

tone is added to a 1.25 kHz tone during the first 500 ms. A 3 kHz tone is generated for the 

next 500 ms. The low frequency tones do not overlap in time with the 3 kHz tone. 

Fig. 2: Wideband spectrogram of the signal described in Fig. 1. 

Fig. 3: Results of the analyzing the signal described in Fig. 1 using the TFRCK method. 

Fig. 4: Spectrogram of the signal described Figure 1 in a background of Gaussian noise 

with SNR=0 dB. 

Fig. 5: Results of processing the signal of Figure 4 with the TFRCK method. 

Fig. 6: Spectral analysis of the utterance /agil/, using the autocorrelation method of 

autoregressive modeling. Results are shown for a short analysis window. 

Fig. 7: Same analysis of Fig. 6 but using a long window. 

Fig. 8: Results of analyzing the signal used in Fig. 6 using the TFRCK method. 

Fig. 9: Magnification of the display in Fig. 6 showing the segment around the release burst 

in more detail. 

Fig. 10: Magnification of the display in Fig. 7 showing the segment around the release 

burst in more detail. 

Fig. 11: Magnification of the display in Fig. 8 showing the segment around the release 

burst in more detail. 
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INTRODUCTION 

Measurements of jitter and shimmer on voice signals are obtained for the purpose of 

discerning perturbations in the oscillatory behaviour of the vocal folds. Jitter is defined as the 

average cycle-to-cycle change in the fundamental period length, and shimmer is the average cycle-

to-cycle change in amplitude, but there is no generally accepted definition of amplitude for a 

complex signal. Traditional definitions rely on specific events in time, such as the largest positive 

peak-to largest negative peak, or the largest negative peak value. Other definitions include the root-

mean-squared (RMS) value of each cycle (given that the fundamental period markers have been 

correctly placed) used by Kempster and Kistler (1984) and Hillenbrand (1987), or the gain factor 

defined by Milenkovic (1987). 

All of these amplitude definition and extraction algorithms work well with amplitude 

modulated (AM) voicing signals, reporting linear increases in shimmer as the extent of the AM is 

increased. Their behaviour under frequency modulation (FM), however, is nonlinear. This 

nonlinearity is often attributed to time-aliasing (Qi, 1994); (Oppenheim, 1989). The phenomenon 

has been observed by both Hillenbrand and Milenkovic and found to vary with vowel and Fo. The 

concept of time-aliasing stems from the impulsive nature of the source-filter model of speech. The 

vocal tract is modeled as a linear filter excited by an impulse train. From cycle to cycle, preceding 

vocal tract impulse responses overlap and add to the current cycle. When the train is aperiodic, the 

changing phase relationships between consecutive impulse responses cause the signal to become 

distorted relative to previous cycles, resulting in measurable shimmer. Since all of the amplitude 

definitions defined above extract measurements at a^tage where the time^liasing has already 

occurred, they all suffer from its effects. 

As a consequence, whenever jitter is present, any measurement of shimmer cannot be 

solely attributed to amplitude modulation of the vocal fold oscillations. It would thus be useful to 

lrThis work has been funded by the National Institutes of Health, Grant DC 00387-08 
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devise techniques that can ignore or overcome aperiodic time aliasing as a shimmer source, or else 

identify and analyze other signals that more accurately reflect the fold behaviour. 

In this study the second alternative is pursued. We examined the behaviour of data 

obtained from a time domain simulation model that generates signals at the level of the vocal folds 

and throughout the vocal tract. This enabled us to characterize possible sources of shimmer 

induced by FM modulation of a driven model of vocal fold tissue displacement. It was found that 

vocal tract time aliasing is only one of a number of sources of shimmer originating from different 

mechanisms and affecting various signals. Shimmer also appears to be a result of the nonlinear 

interactions between the transglottal acoustic pressure, mucosal wave velocity, and tissue 

displacement. These jitter-induced amplitude perturbations then propagate to the supraglottal 

pressure Pin, the subglottal pressure Ps, the minimum glottal area Ag, the glottal flow U and its 

time derivative (dU in this paper), and finally the output pressure from the vocal tract Po. In this 

paper, we study the possible mechanisms for these perturbations. 

METHOD AND MODEL 

An interactive computer simulation of the vocal fold and vocal tract system has been used 

to model the behaviour of the folds under conditions of FM subharmonic modulation of the vocal 

fold tissue displacement. Subharmonic modulation of order 1/2 was chosen so that any changes in 

the plots could be observed by inspection. An FM extent level of 30% was chosen to exaggerate 

the effects, although it is acknowledged that this is much greater than values typically found in 

human phonation. The model, SPEAK-model 2, was developed at the University of Iowa by one of 

the authors. It incorporates source-tract interaction, but does not incorporate self oscillation. 

Instead, there is direct control of tissue displacement by a mathematical driving function. Empirical 

relationships previously described in the literature involving Fo, vocal fold length and thickness, 

mucosal wave velocity, lung pressure, and transglottal pressure are used to define the behaviour of 

the system. The effects of modulation are demonstrated as mechanisms supported by these 

equations. Figures from the simulations are used to illustrate the phenomena. 

Modeling equations 

A full description of the model appears in (Titze 1995). A brief outline is given here. 

Consider the top view of the vocal folds (Figure!). The vocal processes are at x = +/- £o, at y = 0. 

The lowest mode of vibration occurs in the y-direction (a half sinusoid). When £o is small, 

complete closure can occur, while for large values, a glottal chink causing flow leakage occurs (the 

parameter h in Figure 1 indicates the height of the chink). 

For the simple case without jitter, the edges of the vocal folds oscillate sinusoidally in time 

with an angular frequency co = 2tcFq. The glottal width at any point on the y axis (as the folds 
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move outward) is defined as 

g(y,t) - 2|£o(l-y/L) + Usin((Ot)sin(7cy/L)] (1) 

where L is the vocal fold length, and £m is the maximum vocal fold displacement (at y = L/2). The 

first term in (1) is the prephonatory initial displacement. 

To make the model respond in a manner similar to the human folds, relationships extracted 

from the literature have been utilized. For example, it is known that £m is dependent on lung 

pressure and Fo. The following rule is adopted from Titze (1988): 

^n = 17.4PL0-5F0-l-6 (2) 

where Pl is the lung pressure. 

Figure 2 shows a three dimensional view of the folds. A z-axis has been added to describe 

the motion of the mucosal wave as it travels from the bottom to the top of the folds. If the vertical 

dimension is sliced into layers, each layer k can have its own value of initial condition £ok and 

maximum displacement £mk. The propagation of the mucosal surface wave can then be obtained 

by replacing sin(cot) in equation (1) with sin(co(t-z/c)), where z is the vertical point under 

consideration and c is the wave velocity. If the vertical axis is sliced into N layers, the phase 

between layers is assumed to vary linearly between layers from the bottom (k=l) to the top (k=N) 

of the z-axis: 

(he - co(t-z/c) = co(t-kTf/(Nc)) (3) 

where <t>k replaces cot in equation (1) and T is the thickness from bottom to top. Titze, Jiang and 

Hsiao (1993) conducted an experiment to measure c. They examined the motion of two sutured 

points on a canine hemi-larynx placed in the vertical dimension. The time required for the 

displacement of the superior suture to 'catch up1 to the displacement of the inferior suture was 

measured by observing the time taken to pass a certain point. This time was interpreted as an 

indication of the wave propagation speed. In the results section of the paper, the authors discuss the 

fact that the inter-suture distance (and the overall thickness of the folds) may vary during vibration 

as a function of Fo. 

We present an equation which takes this thickness variation into account: 

c/T « aFo/To (4) 
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where To is the nominal thickness at rest, T is the thickness during vibration for a given Fo, and a 

is a constant parameter of value 0.01 meters (Titze, 1995). 

Ftom the above driving equations, the displacement x at any point (yjc) may be obtained: 

g(yjc,t) - 2[£ok(l-y/L) + Uksin(<|>k)sin(Ky/L)] (5) 

The glottal area between the symmetric folds at any layer k can be calculated by integration, and 

the minimum glottal area Ag, observable by a photoglottogram, can be estimated by finding the 

minimum area layer at each point in time. 

The glottal flow is determined by the transglottal pressure. The orifice Ag, the subglottal 

pressures Ps, and the supraglottal pressure Pin determines the flow U via the equation: 

(6) 

where kt is the transglottal pressure coefficient (assumed constant for this study), and p is air 

density. An /a/ vocal tract shape is modeled using wave reflection equations (LUjencrants, 1985). 

FREQUENCY MODULATION 

If Fo is sinusoidally modulated, then the 'instantaneous fundamental frequency1 can be 

written as: 

Fo1 = Fo(l + Ecos(2rcFmt)) (7) 

g(y,t) in equation (1) thus becomes frequency modulated at a modulation frequency Fm and an 

extent E, proportional to Fm/Fo. Figure 3 illustrates the basic shape of the modulated displacement 

when Fo is 125 Hz, Fm is 62.5 Hz, and E is O.2(27tFm/Fo)- T^ effects of Equation 7 propagate 

through the model in the following ways. 

Modulation of the Mucosal Wave Velocity 

If Equation 7 is assumed, the mucosal wave velocity c now varies with Fo1 (via Equation 

4). The modulation effect then propagates into Equations 3 and 5. Before we discuss what happens 

in our model, let us examine what happens in aisimplersystem of equations. Consider the signal in 

Figure 3. It might represent the oscillation of the bottom layer (k=l) of the folds. If a constant time 

delayed version of this signal is used to represent the top layer (k=N) of the vocal folds, amplitude 

variations will occur in the minimum glottal area wave Ag. These variations in the minimum glottal 

area are depicted in Figure 4. Such peak-to-peak variations in the 'minimum aperture1 appear 

regardless of the relative sizes of the waves. However, consider the top of the folds to be oscillating 
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with a constant phase delay relationship. The minimum glottal area exhibits no amplitude 

variations here (Figure 5). It can be shown that the minimum glottal area in Figure 5 will always be 

free of amplitude variations, regardless of the relative sizes of the top and bottom displacements. 

This is provided that a constant phase lag is maintained between the layers and that each of the 

contributing displacements exhibit no amplitude variations independently. 

In our vocal fold model, if c is proportional to the 'nominal1 average value Fo, it can be 

shown analytically that a constant time delay mucosal wave will be observed (see Appendix). 

However, if c is instead proportional to the instantaneous value of fundamental frequency Fo1, it is 

also shown in the Appendix that a constant phase delay relationship will be produced. Studies on 

the mucosal wave e.g. (Titze 1989) report a constant phase delay, although an FM situation is not 

usually considered. It remains to be demonstrated which type of delay - constant time, constant 

phase, or neither - actually occurs for FM modulations of the vocal folds. 

Figure 6 demonstrates what happens in the driven vocal fold model when the nominal 

average value of Fo is used for both the maximum vocal fold displacement and the speed of 

mucosal wave propagation. The displacement signal x exhibits FM behaviour, but no amplitude 

perturbation. The glottal area waveforms (nonminimum) for three points on the z axis (bottom 

(k=l), middle (k=10), and top (k=21)) show a similar result to Figure 4. The FM subharmonic in x 

produces amplitude perturbations in minimum glottal area Ag, the flow U, the derivative with 

respect to time dU and on into other signals in the vocal tract. Note that the contact area CA does 

not exhibit any amplitude perturbations, and that the x and Agj, Agio*an^ Ag2i plots are on an 

expanded time scale relative to the other plots, so that the effect of overlapping Ag waves can be 

seen. This applies to Figures 6 through 10. 

Figure 7 demonstrates the situation when the instantaneous Fof is used for the mucosal 

wave speed. A constant maximum amplitude is assumed (time varying £m will be discussed later). 

The three glottal area waves exhibit no visible minimum aperture amplitude variation in Ag or CA, 

as predicted by the previous discussion. The glottal flow U, however, does exhibit maximum 

amplitude variations, which then propagate into dU and on into the vocal tract. The cause of this 

variation is discussed next. 

Transglottal Pressure and Ag.U slopes 

The glottal flow in Figure 7 demonstrates amplitude perturbation even though Ag does not. 

This occurs because of a combination of two effects. First, from Equation 6, the glottal flow U is 

related to Ag and the transglottal pressure Ps-Pin. Pin is related to vocal tract loading, which is 

usually inductive, causing the flow to skew to the right (i.e. it is delayed relative to Ag). As a 

result, the peak of the flow wave U occurs after the peak of Ag. While the peaks of Ag are the 

same height, the negative closing slope varies due to the FM modulation. As a result, the value of 
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Ag at the instant of peak flow will vary, causing changes in U. 

This phenomena can be more clearly seen in Figure 8, in which the model is modulated 

with a 1/3 FM subharmonic. Again, Ag exhibits no amplitude perturbation, while U, dU and 

subsequent propagated signals exhibit amplitude changes. The slope of Ag clearly influences U, 

which in turn influences dU. The negative slope in both U and Ag appears to be the primary 

determinants of peak magnitudes in the vocal tract. It should be noted that the negative minimum 

peak in dU is often associated with the excitation of the vocal tract, where the initial large negative 

peak in the voice signal is related to this peak in dU. 

Modulation of 

If (^ were constant, the glottal width equation (1) would vary sinusoidally for constant 

Fo, and in a modulated manner (Figure 3) for Fo'. When a time varying relationship between £m 

and Fo' is assumed for Equation 2 (again assuming that these equations apply to dynamically 

modulated conditions), direct amplitude modulation of the maximum tissue displacement occurs. 

Figure 9 assumes a constant phase delay (Fo' in Equation 4) and dynamically varying £m (Fo* in 

Equation 2). The displacement x shows both amplitude and frequency modulation. As a result, 

amplitude perturbation appears in all subsequent signals (except for CA). 

DISCUSSION 

This study has identified two potential laryngeal sources for jitter-induced shimmmer, and 

suggested that caution be used regarding the interpretation of another. One source is the 

modulation of the maximum amplitude of vibration (£m), which directly influences the amplitude 

of the glottal areas. The second source is the slope of the minimum glottal area, which determines 

the peak in the flow wave (due to the inductive load of the vocal tract). It should also be noted that 

it is the slope of the flow wave, not the peak, which is closely tied to the impulsive excitation of the 

vocal tract pressure wave. Often it is this peak in Pq that is marked in voice waveform analysis. 

If mucosal wave velocity c is dependent on Fo', it has been demonstrated here that a 

constant phase delay rather than a constant time delay occurs between the top and bottom of the 

folds, making it unlikely (in this model of vibration) that minimum glottal area (Ag) amplitude 

perturbation due to a constant time delay mucosal wave is a source of shimmer. 

It should be remembered, however, that the Fo' and ^modulations likely occur 

simultaneously, resulting in Ag perturbation as illustrated in Figure 9. In a real vocal fold, where 

changes in the stiffness of the muscle are likely to be the source of perturbation, it is probable that 

both Fo1 and ̂ n will vary. 

It is interesting to note that the contact area CA is amplitude insensitive to FM. CA can be 

measured with the electroglottograph and it would be useful to know whether it demonstrates 
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shimmer or not. It is a measure of the electrical conductivity measured from one side of the folds to 

the other. In all the examples that were given, complete closure was achieved (the z layers were 

preconfigured so that the initial £ok were close together, causing CA to reach a maximum for all 

cycles. Figure 10 illustrates the case where this assumption is relaxed, resulting in incomplete 

closure for some of the layers in the z-axis. As a result, CA exhibits amplitude perturbation. It 

should thus be noted that the ability of CA to demonstrate glottal displacement amplitude 

perturbation is limited due to 'saturation1, because it is inherently a measure of behaviour during 

collision rather than glottal opening. 

Since the electroglottograph does not directly reflect maximum tissue displacement, we 

should ask which signal is likely to most accurately describe the tissue displacement. Assuming 

that the vocal fold mucosal wave is a constant phase delay phenomena, then the glottal area signal 

will directly describe the displacement. This is best measured by the photoglottograph. 

SUMMARY 

The interactions among several voice production variables have been qualitatively 

described for a driven model of vocal fold displacement. The mechanisms identified here suggest 

that shimmer in the glottal flow U occurs from slope changes in Ag, while direct modulation of the 

peak tissue displacement £m will affect Ag 

The observations made here suggest further study. The model we have studied drives the 

tissue displacement explicitly using predetermined fundamental frequency behaviour. While the 

mechanism due to slope changes in Ag is likely to be common to all vocal fold models, the 

empirical equations relating £m and c to Fq are not used in self-oscillating models, since Fq is not 

directly controlled. An examination of self-oscillating models in which physiological variables are 

controlled (e.g. tissue stiffness) is warranted. 

APPENDIX 

Consider the tissue displacement equations £t and £b for the top and bottom of the fold: 

A1 
A2 

where £ob and £# are the initial displacements, c%f is therfundamentai frequency (possibly time 

varying), t is the time variable, T is the variable vertical thickness, of the fold and c is the velocity 

of the traveling wave. 

If Fq is assumed constant, c = aFoTTTg, then a constant time delay equation replaces A2: 

= Cot + sin^Xt - T0/aF0)) A3 
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On the other hand, if Fo (and therefore c) is assumed time varying, then c = oFqT/Tq or 

c ■ acoofTV2iiT0, and A2 becomes a constant phase lag equation: 

A4 

A5 
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0 0 

Figure 1. Top view of vocal fold model. From (Titze 1994). 

Figure 2. Three dimensional view of vocal folds. From (Titze 1994). 
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Frequency-Modulated Sine : sin [Wo*t + mod_ext * 2pi * sin (Wm*t)] 
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Figure 3. Subharmonic Frequency Modulated Sinusoid. Fq = 125 Hz, Fm = 62.5 Hz, E = 20% 



W
O
N
G
-
1
1
 

B
o
t
t
o
m
 S
e
g
m
e
n
t
 with T

i
m
e
-
D
e
l
a
y
e
d
 T
o
p
 S
e
g
m
e
n
t
 

[ tim
e
 d
e
l
a
y
 =
 1 

millisec ] 

0
.
0
0
5
 

0.01 
0
.
0
1
5
 

0
.
0
2
 

0
.
0
2
5
 

0
.
0
3
 

0
.
0
3
5
 

0
.
0
4
 

0
.
0
4
5
 

0
.
0
5
 

M
i
n
i
m
u
m
 "
A
p
e
r
t
u
r
e
"
 b
e
t
w
e
e
n
 T
o
p
 a
n
d
 B
o
t
t
o
m
 S
e
g
m
e
n
t
s
 

0
.
0
0
5
 

F
 
0
 

0
.
0
1
 

0
.
0
1
5
 

0
.
0
2
 

0
.
0
2
5
 

0
.
0
3
 

= 1
2
5
 H
z
 

: 
m
o
d
j
r
e
q
 =
 6
2
.
5
 H
z
 

: 

0
.
0
3
5
 

0
.
0
4
 

m
o
d
 
e
x
t
e
n
t
 =
 

0
.
0
4
5
 

0
.
0
5
 

2
0
%
 

F
i
g
u
r
e
 4. T

i
m
e
 d
e
l
a
y
e
d
 F
M
 s
u
b
h
a
r
m
o
n
i
c
 (1/2) m

o
d
u
l
a
t
e
d
 sine w

a
v
e
s
 a
n
d
 the m

i
n
i
m
u
m
 aperture 

w
a
v
e
 result. 



W
O
N
G
-
1
2
 

B
o
t
t
o
m
 S
e
g
m
e
n
t
 with P

h
a
s
e
-
L
a
g
g
e
d
 T
o
p
 S
e
g
m
e
n
t
 

-{-phase lag =
 6
0
 d
e
g
 ] 

M
i
n
i
m
u
m
 "
A
p
e
r
t
u
r
e
 

0
.
0
3
5
 

0
.
0
4
 

0
.
0
4
5
 

0
.
0
5
 

b
e
t
w
e
e
n
 T
o
p
 a
n
d
 B
o
t
t
o
m
 S
e
g
m
e
n
t
s
 

0
.
0
0
5
 

F
 
0
 

0
.
0
1
 

0
.
0
1
5
 

0
.
0
2
 

0
.
0
2
5
 

0
.
0
3
 

= 
1
2
5
 H
z
 

: 
m
o
d
j
r
e
q
 =
 6
2
.
5
 H
z
 

: 
0
.
0
3
5
 

0
.
0
4
 

0
.
0
4
5
 

m
o
d
 
e
x
t
e
n
t
 =
 2
0
 %
 

0
.
0
5
 

Figure 5. P
h
a
s
e
 d
e
l
a
y
e
d
 F
M
 s
u
b
h
a
r
m
o
n
i
c
 (1/2) m

o
d
u
l
a
t
e
d
 sine w

a
v
e
s
 a
n
d
 the m

i
n
i
m
u
m
 aperture 

w
a
v
e
 r
e
s
u
l
t
;
 



WONG-13 

P -P 
1 s Mn 

dU 

U 

CA 

g2l 

/\ 

X 

Figure 6. SPEAK generated subharmonic (1/2) array of signals. Assumes Fo is constant for 

Equations 2 and 4, causing a constant time delay between displacements. 
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Figure 7. SPEAK generated subharmonic (1/2) array of signals. Assumes Fo is constant for 
Equation 2, and varies for Equation 4, causing a constant phase delay between displacements. 
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Figure 8. SPEAK generated subharmonic (1/3) array of signals. Assumes Fo is constant for 

Equation 2 and varies for Equation 4, causing a constant phase delay between displacements, but 

uses 1/3 subharmonic to generate displacement slope changes. 
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Figure 9. SPEAK generated subharmonic (1/2) array of signals. Assumes Fo' (time varying; is 

used for Equations 2 and 4, causing a constant phase delay between displacements, and amplitude 

modulation of the displacement. 
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Figure 10. SPEAK generated subharmonic (1/2) array of signals. Assumes Fo' (time varying) is 

used for Equations 2, and 4, causing a constant phase delay between displacements, and amplitude 

modulation of the displacement. Lower folds do not close. 
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A Guide to Selecting A/D Hardware 

Martin Milder, University of Iowa 

Consider the data acquisition chain: 

Source -> Amplification -> Filters) -> A/D Converter 

Source 

The source may be, e.g. Microphone, Hectroglottogram (EGG), Photoglottogram (PGG) 
Glottal Flow, Pressure. 

Amplification (optional"! 

Must meet requirements of converter (some converters have built-in gain stages). 

FiltertrecoininenHffif) 

Low pass at 1/2 of the sampling rate (or less). Only if there is no high frequency energy can 
you do this. Some converters will low-pass automatically once the sampling rate is selected. 

A/D convert^ 

Specifications 

A. Miscellaneous 

- number of Channels. 
- max sampling length. 

- input range 

B. Bandwidth 

- highest sampling rate 

- lowest sampling rate 

• fixed or variable sampling rates. 
C. Signal/noise 

-total noise is the sum of all parts in the chain. 
- more bits, the better. 

Source Types 

(1) Microphone " 

Purpose Freq response S/NfdBY 

Auditory 20Hz - 20Khz 80 
F0 Extraction F0/4-8*F0 
RMS 

Titter FO/4 - 20*F0 

Shimmer FO/4 - 20*F0 
Harm/Noise FO/4 - 20*F0 

Inverse Filter 3Hz-8*F0 

(2)EGGorPGG 

Purpose Freq response S/WHRY 

F0 Extraction F0/4-8*F0 

Wave Shape 3Hz - 20*f0 
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CBatch: A Software Program for 

Format-Independent Analysis of 

Acoustic Waveform Data 

Paul H. Milenkovic 

Department of Electrical and Computer Engineering 

University of Wisconsin-Madison 

1415 Johnson Drive 

Madison, Wisconsin 53706 

Abstract 

CBatch is a software program for the DOS operating system that can feed 

a sequence of acoustic data files through a user-supplied acoustic analysis pro 

gram. CBatch takes care of all of the translating required to read and write a 

variety of widely-used waveform file formats. The analysis program is a soft 

ware filter that reads and writes to the DOS standard input and output data 

streams, and CBatch intercepts these streams and redirects them to waveform 

files. The analysis program obtains information typically stored in file headers 

(sample rate, number of samples, data range and units) by writing keyword 

strings to standard output and by reading alphanumeric responses from stan 

dard input. The analysis program writes a keyword string to tell CBatch that 

it is read for waveform data, and then it reads blocks of waveform samples from 

standard input and it optionally writes processed blocks of samples (such as a 

pitch trace) to standard output. 

It would be extremely useful to make acoustic analysis software portable across 

different speech software packages and different types of computer. Acoustic analyses 

include pitch, formants, glottal waveshape, long-term average spectrum, voice per 

turbation, word segmentation, the resynthesis of speech from parameters, and many 

other signal transformations of interest to the voice and speech community. Such 

portability would facilitate the dissemination of research results, the repeatability of 

research studies, as well as the development of standards. 

There are two ways to establish a standard for making acoustic analysis soft 

ware portable. One way is to establish a standard file format that acoustic analysis 

1 
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programs could read and write. The other way is to develop a standard interface 

between the acoustic analysis program and a shell program that could translate the 

many existing file formats. This report concentrates on this second approach. 

The concept is to implement the acoustic analysis algorithm as a software filter. 

The software filter has an exceedingly simple interface: it reads blocks of bytes from 

the operating system-designated standard input stream and it writes blocks of bytes 

to the standard output stream. The software filter has control over how many bytes 

it wants to read or write. A shell program intercepts the standard input and output 

data streams and takes care of what files are to be processed and in which format. 

There is an additional embellishment to the software filter. The filter program 

makes requests of the shell program by writing alphanumeric keywords to standard 

output and it reads the shell's alphanumeric responses from standard input. This 

communication is primarily for obtaining information from the waveform file header 

- sample rate, data units, number of samples - without having to know the details of 

the header format. This communication can also be used for signalling. For example, 

the filter can tell the shell when it wants to switch over to reading and writing blocks 

of waveform samples. 

In the usual situation of a main program calling a subroutine, the main program 

asks the questions and the subroutine provides the responses. In this situation, it is 

the suboordinate filter that is asking the questions and the supervisory shell that is 

providing the responses. This makes the filter much simpler because it only needs to 

ask for the things it needs to know in the order it needs to know them. It also makes 

the filter interface extensible. Adding new keywords does not invalidate existing filters 

which only know about the old keywords. Finally, it makes the interface interactive. 

The filter can indicate whether it wants both the input and output data streams 

attached to waveforms or whether it wants input only so it can write the output in 

its own format. 

The CBatch program is a shell that employs the proposed filter interface to imple 

ment batch processing of waveform files in a variety of formats. CBatch is a program 

written in Turbo Pascal (Version 4 or later) that runs under DOS (Version 3 or later). 

The complete source will be made available through E-mail, an FTP server, or on a 

floppy disk: the source is ready but details of distribution are being arranged. 
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Which file formats does CBatch support? 

CBatch inputs waveforms from 

SPHERE is the format developed by National Institute of Standards 

Technology (NIST) for dissemination of the Texas Instruments-MIT-

NIST (TIMIT) speech recognition data base on CD-ROM. It has an 

ASCII keyword free-format header. 

CMU is the format employed in the beta-test (preliminary) release of the 

TIMIT CD-ROM. It has a fixed-format binary header. CMU refers 

to Carnegie-Mellon University, and the file format was developed in 

the course of speech recognition work at that institution. 

NCVS92 is the format developed at the National Center for Voice and 

Speech (NCVS) for the dissemination of test data for acoustic anal 

ysis algorithms. It also has an ASCII keyword free-format header. 

This type of header is quite compatible with SPHERE, and there 

was discussion at the February 1994 Denver meeting that SPHERE 

should replace this format. This format contains keywords for data 

units and data range (translation from binary into real-world units 

like Volts or dB) which are desirable to add to SPHERE. 

RIFF is the Microsoft multimedia waveform file format. The files typ 

ically wave the .WAV extension. Software packages sold with the 

popular sound cards for multimedia (Sound Blaster 16, Pro-Audio, 

Ensoniqs, etc.) employ this format. 

Kay .NSP is the file format developed by Kay Elemetrics, identified by 

files with the .NSP extension. The Kay Linquistics Database CD-

ROM as well as the planned Kay Voice Database are in this format. 

UW XRMB is the file format used to collect both acoustic and pellet 

track signals in the University of Wisconsin X-ray Microbeam system. 

The files have the .DF extension. 

SpeechStation is the Ariel/Sensimetrics software package for acoustic 

analysis on the IBM PC. 

CSRE40 is the file format employed by Version 4 of the CSRE software 

package. 

CSpeech is the CSpeech software package. 

ILS is Interactive Language Systems, a software package widely used on 

PDP-11 and VAX systems. 
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CBatch automatically detects waveform files in the above formats. If autodetection 

fails (many packages uses ILS files without all the fields filled) or if a format is not 

on the list, header parameters may be entered on the CBatch command line. 

CBatch writes to these formats (a command line parameter selects the format) 

SPHERE format is readable by the Entropies Waves+ software packages 

plus any other package that reads TIMIT data. 

NCVS92 is similar in concept to SPHERE, but contains additional key 

word definitions for data units and range. 

RIFF is compatible with a wide variety of software supplied with the 

popular PC sound cards. 

CSpeech is included, not because I want to give a special status to 

CSpeech, but because I am the only source of information of how 

to get files into that format. 

ASCII is alphanumeric text, desirable for the output of pitch traces for 

statistical analysis. 

nohdr is raw binary without any header. 

How do I invoke CBatch? 

Invoke CBatch from the DOS prompt by entering 

cbatch params fname cmd 

where params is a list of parameters separated by spaces, fname is either a valid DOS 

path name (directory and file name) or wildcard specification (such as *.wav), and 

cmd is the name of your filter program followed by the parameters required by that 

program. 

The entry fname specifies one or more waveform files. If the filter uses both input 

and output, those are the input files, and the output will go to files of the same name 

but in the current directory. That way you can analyze files on CD-ROM (such as 

TIMIT) and have the results go to files in the current directory on your fixed disk. If 

the filter specifies a file extension, the output will go to files having that extension. 

The parameters are 

/H: h overrides the autodetection of the input file header and strips off h 

16 bit words from the beginning of the file. 

/0:o overrides the input file header specification for conversion between 

offset binary and two's-complement numeric formats. For 12 bit 

offset binary, specify /0:2048. 
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/R:r specifies the number of bits of data resolution. If the input file 

header does not specify resolution, the value r is assumed. If the 

input file header specifies resolution, the data will be shifted to r 

bits. 

/B overrides the input file header to specify that input data needs to be 

byte-swapped (for waveforms collected on SUN or Macintosh com 

puters). 

/N:n overrides the input file header and specifies that the data contains 

n channels of sample interleaved waveforms. 

/Cic selects channel c from multiple channels where c starts at 1. 

/Did is the decimation factor. The parameter /D:2 means that the in 

put file was downsampled (decimated) to contain only every second 

sample, so the input waveform will be upsampled by repeating every 

sample. 

/sis overrides the input file header specification of the sampling rate in 

kHz. 

/r:r overrides the input file header specification for the data range. For 

example, /R:12 (12 bit resolution) and /r:20 (data range of 20) 

means a sample value of -2048 corresponds to -10 (Volts or whatever 

other units are specified) and 2048 corresponds to 10. 

/uiuname overrides the input file header specification of the units name 

(such as /u:Volts or /u:ml/s). 

/Yirname means that the fname entry specifies one or more directories, 

and that rname designates the same file name that occurs in those 

directories. For example, if the files are c:\rec001\speech.wav, 

c:\rec002\speech.wav, ..., specify the parameter /F:speech.wav 

and use c:\rec??? for your fname entry. 

/A:a specifies the number of decimal digits accuracy for ASCII output. 

/lit specifies the time step for ASCII output in ms. 

/Viw specifies an analysis window length in ms for ASCII output. The 

first output sample will be at w/2 ms. The purpose of this parameter 

is to align the ASCII output times with other analyses and does not 

otherwise control the filter doing the actual analysis. 

/R specifies run-length ASCII output. A new ASCII value is output when 

the signal changes, but no more than every /lit ms if the signal 

changes too frequently. 
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Ioutformat selects the output waveform format. Choices are /nohdr, 

/NCVS, /SPHERE, /RIFF, /CSpeech (default that can be changed by 

recompiling cbatch.pas), and /ASCII. The different file formats are 

explained above. 

Example: 

cbatch /ASCII /T:2 /R c:\speech\*.wav cptacf cptacf.sav 

applies the pitch analysis filter cptacf to all the files in the directory c:\speech 

having the .wav extension. The pitch analysis takes its parameter settings from the 

file cptacf .sav. The analysis results will be in ASCII format, sampled in run-length 

fashion (when the value changes) but no more than once every 2 ms. The output 

files will have the same name as the waveform files, but they will go into the current 

directory and have the .f 0 extension. 

How do I write a filter program? 

The source code distribution includes the sample filter program rectify .pas, which 

performs a full-wave rectification of the input signal. It also includes the Turbo Pascal 

unit file stdio.pas, which simplifies use of the filter interface. 

The basic structure of a filter program is to write keyword queries to standard 

output and to read alphanumeric responses to the queries from standard input. When 

this communication phase is done, write the query initiate_binary_IO (the proce 

dure call StdCmdO ') substitutes initiate_binary_IO for the null string) to initiate 

the data phase. Then simply read blocks of 16 bit samples from standard input and 

optionally write blocks of 16 bit samples to standard output: the number of samples 

to read and write is under your control. If you are doing only input, keep reading 

samples until standard input returns zero samples (this action resets the interface). 

If you are doing input and output, write zero samples to standard output as your last 

call (this also resets the interface). 

CBatch recognizes these keywords. The first set of keywords are the communica 

tion phase dialog preamble: they must precede the other keywords and if used, they 

must be in the order listed below. 

extension=ex< specifies that the output file has extension ext (up to three 

letters). 

input requests waveform data on standard input, 

output requests waveform data on standard output. 

The following keywords make up the body of the dialog and may occur in any 

order after the preamble. 

6 
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NSAMP? returns the number of samples in the input file. 

RES? returns the number of significant bits in the 16 bit waveform samples 

(controlled by CBatch /R:r parameter). 

sample_ms? returns the interval between samples in ms. 

start_ms? returns the time of the starting sample in ms (usually zero in 

batch mode - may have nonzero value when filter is invoked from 

the CSpeech program). 

stopjns? returns the time of the final sample in ms. 

units_name? returns the input file units name (such as Volts). 

data-scale? returns a value: multiply sample integer by this value to get 

real-world values in units_name units. This value is negative if the 

waveforms are inverted (for some types of microphone). 

f name? returns the data file name, with the designated extension (from 

extension=ext) tacked on. If you have selected filter input only and 

are outputting in your own file format, use this query to get a file 

name. This is also useful if you want to do your own input formatting 

and have selected filter output only. 

sname? returns the actual input file name without changing its extension. 

This is useful if you need to label analysis results with their file of 

origin. 

DOUBLE: textquery prompts the user with the text string textquery for a 

decimal (double precision data type) value. This is useful if the filter 

needs to query the user for analysis settings. An alternative is for 

the filter to read such settings from the command line or from a file. 

sample_ms=5 sets the waveform sample interval in ms. Use this if you 

have selected output only and doing your own file read. 

buff er_ms= sets the output file duration in ms. Use this if you have 

selected output only and are doing your own file read. 

units_name=wraarae sets the output file units name. If you are doing pitch 

analysis, you may want to set units_name=Hz. 

range=r sets the output file range (use range = 1000 for pitch analysis). 

Following the dialog body, the keyword initiate_binary_IO is transmitted by 

the procedure call StdCmdC1'). For the use of StdCmd to transmit keywords and 

for the calls to decode responses, see the sample program rectify.pas and the unit 

stdio.pas. 
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How is the source to CBatch organized? 

CBatch is a Turbo Pascal (Version 4 or later) program divided into a main program a 

set of Turbo Pascal units (separately compilable modules containing procedures and 

data type declarations). These modules are 

cbatch.pas is the CBatch main program. 

strblock.pas contains useful routines for manipulating character strings 

and processing file names. Some of these routines have equivalents 

in the libraries of later versions of Turbo Pascal, but including these 

routines gives downward compability with Version 4. 

wavein.pas contains routines to input all the supported waveform file 

formats. You may want to examine this unit if you want to read 

waveform files directly without the filter interface. 

waveout. pas contains routines to output a subset of the supported file 

formats. It is most important to be able to read as many formats as 

possible to access archival data. Support for output to more formats 

may be added. 

wavehdr.pas contains header description and header validation proce 

dures for the supported file formats. This unit is useful as a reference 

to the different file header.s 
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Introduction 

In a broad sense, the first voice data file was a 

multimedia file, and so is any voice data file, regardless 

of format. This report will consider only those multimedia 

files known a HRed Book11 audio files found on CD-ROM, and 

that type of RIFF file known as a WAVE file which contains 

PCM audio. These file formats are evaluated for potential 

use in voice research, speech and language pathology and 

vocal pedagogy. In the interest of brevity, discussion has 

been limited. 

The adoption of multimedia file formats implies that 

multimedia hardware will also be adopted. In some cases 

this may be true. The acceptance of multimedia holds the 

promise of widespread availability of voice data files over 

computer networks and in computer databases, as well as 

widespread ability to convert the files into audio, all with 

equipment that can be purchased on a consumer budget. 

Benson, Sage and Cook (1) have proposed their wtriple-

gateway methodology" for evaluating emerging technologies. 

Their evaluation is based on identifying elements of risk 

due to uncertainty. Since their methodology is new, a 

description is in order. In their words: 

wIt is based on the proposition that a technology, to 

reach a mature stage in which it yields useful products 

or services, must pass through three gateways: the 

technology gateway, the systems-management gateway, and 

the market gateway. 

"Passing through the technology gateway requires 

research ability, innovation, technical merit, and a 

technical champion. 
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"The management gateway includes technology 

management, finance, enterprise management, and 

standards. The market gateway, sometimes referred to 

as a "demand-pull" gateway, includes societal and 

consumer needs and receptiveness and general economic 

conditions. 

"Normally, a technology passes through the first stages 

of technology development before confronting the 

management and market gateways, so the reader might 

wonder why we treat the market and management gateways 

first. We do so to emphasize that most successful 

technologies are, in the final analysis, deployed 

because of "market-pull11 rather than "technology push." 

But in whatever order the gateways are listed, the key 

point is that the technology must pass through all 

three gateways before it can be successfully deployed." 

The following analysis duplicates the paragraphing and 

headings of the original journal article: 

A. Market Gateway. 

1.) New uses. This is a new use of an existing 

technology associated with the personal computer. This 

association may be positive or negative. The positive is 

illustrated by the new high performance RISC workstations 

that can be purchased with 16 bit multimedia audio hardware, 

and the accompanying software that uses standard PC 

multimedia audio files. The negative is illustrated by 

cheap computer game programs. 

2•) User skepticism about improved performance 

characteristics. Since the current voice data file formats 

have existed for some time, some skepticism about the wisdom 

of adopting a new file format is easily understood. Because 

of their complex structure, multimedia file formats 

initially create more work for programmers. 



CUR-4 

For distribution on CD-ROM, however, "Red Book" audio 

(the standard of music CDs) is the preferred format for 

audio files. CD-ROM readers contain the circuitry to play 

the files, thus eliminating the need for a separate piece of 

digital-to-analog equipment. Kay Elemetrics publishes a 

phoneme database on CD-ROM with Red Book audio files. 

3.) Requirement for behavior adjustment by user. 

Computers and analysis machines will insulate their users 

from any changes. The requirement for behavior change, 

however, will fall most heavily on the part of programmers 

and researchers who do their own programming. To fully 

utilize multimedia files, programmers must convert to 

thinking in terms of data objects, and their freedom to 

improvise must be replaced by the discipline inherent in 

multimedia standards. 

4.) Competitive technologies. Existing file formats 

meet existing needs. Future needs, however, appear to be 

best met by multimedia files. A large number of word 

processing, telecommunications and database programs are 

compatible with multimedia file formats. In order to take 

advantage of this compatibility, existing file formats must 

be encapsulated in a shell that mimics some of the functions 

of multimedia files. It may be easier to convert the 

original file into a standard multimedia file. 

5.) Unpredictable technological developments. The 

fall of computer prices, the wide acceptance of multimedia, 

and the advent of CPU and DSP chips of unprecedented power 
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may herald the inclusion of hardware suitable for use as 

voice analysis systems as a standard component of computer 

motherboards• 

According to Benson, "... information is an 

increasingly important driving factor in our economy.,.11 

The ability of multimedia file formats to adapt to modern 

demands for information may be the key to their ultimate 

acceptance in the voice community. The hunger of voice 

teachers for information will lead to their acceptance of 

whatever technology they can afford. At the present, only 

multimedia can provide audio hardware for less than $200, 

and software that converts 386 and 486 PCs into spectrum 

analyzers is available at no cost on CompuServe. 

According to Communications Week, June 28, 1993, the 

Multimedia Community of Interest is dedicated to promoting 

wstandards that make it easier for users to transmit 

multimedia information over networks.11 It is composed of 

representatives from IBM, British Telecommunications pic, 

Deutsche Bundespost Telekom, France Telecom, Intel 

Corporation, Northern Telecom Ltd. and Telastra of 

Australia. Along similar lines, the MIME-1 standard makes 

it easier to transmit multimedia files over the Internet. 

For educational use, both audio and laryngoscopic video 

can be combined on the same CD-ROM. Two companies known to 

the present author are selling software that allows CD-ROMS 

to be launched (used) by both PCs and Macintosh Computers. 
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These factors tend to reduce the uncertainty of the 

adoption of multimedia file formats by new users. Users of 

present file formats may not desire additional capabilities. 

6.) Legal barriers. Not applicable. 

B. Management Gateway 

The voice community is composed of a large number of 

individuals in many career fields, and some professional, 

academic and business organizations. That portion of the 

voice community already involved in voice analysis may not 

desire a radical change in file format. Another portion, 

mostly voice teachers, voice coaches and singers, is not now 

active in voice analysis, but is interested. This group 

will have the least resistance to multimedia file formats. 

An important consideration is database management. In 

order to automate the search and retrieval of voice data 

samples, the voice data files must be classified. If a new 

file is added to a collection, an automated procedure must 

be available to add attribution, annotation, classification 

and other information to the database. Files that provide 

for storage of this type of information are more valuable 

than files that do not. Multimedia files already have the 

capability to store this information in their very 

structure. The present author is currently working to 

establish a committee to develop standards for the insertion 

of attribution, annotation, classification and other 
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information into multimedia files to enhance their use in 

medicine and other scientific fields. 

C. Technology Gateway 

1.) Innovativeness of technology. Multimedia 

technology was very innovative when first introduced, but 

has now gained considerable acceptance. This factor does 

not significantly contribute to uncertainty. 

2.) Number of constituent technologies. Since 

multimedia hardware and equipment sales continue to 

increase, the large number of constituent technologies 

supporting multimedia is not contributing to uncertainty. 

3.) Manufacturing difficulties. Not applicable. 

4.) Institutional changes required to introduce the 

new technology. This is a factor of great uncertainty. If 

the voice community continues to conduct business as it has 

in the past few years, there is no great motivation to 

accept change. Present file formats are adequate. 

When the voice community recognizes the need to 

transmit voice data files over computer networks, or archive 

large amounts of voice data, or classify a large number of 

voice samples and keep them ready for instant retrieval, 

then the possibility will exist for adoption of more 

flexible file formats. 

Conclusions and Author's Assessment 

Multimedia file formats do not offer enough readily 

apparent benefits to entice users to abandon entrenched file 
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formats. Equipment manufacturers, however, may consider 

optional compatibility with multimedia file formats as 

inexpensive insurance to cover future market demands. If 

the IEEE issues a standard for incorporating attribution, 

annotation, classification and other information into 

multimedia files, they have the potential for becoming a 

preferred medium for short term archival use. 

Multimedia file formats may also find use for data 

interexchange between incompatible file formats. The small 

number of voice file users does not justify the large 

investment necessary to produce software that will convert 

files from any one format to any other format. Commercial 

word processing conversion software converts files to an 

intermediate form which is then converted into the desired 

format. It would be possible for each file format sponsor 

to produce software to convert their own files into a 

standard multimedia intermediate format. The resulting 

intermediate files would be compatible with database 

programs for automated search and retrieval. 

For new users with consumer grade equipment, multimedia 

files are the only files widely supported with digital audio 

utilities. 
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2   WORKSHOP ON ACOUSTIC VOICE ANALYSIS

A workshop was held on the 17th and 18th of February, 1994, in Denver, Colorado to reach

better agreement on purpose and methods of acoustic analysis of voice signals.  Sponsorship was by

the National Center for Voice and Speech, a research and training center funded by the National

Institute on Deafness and Other Communication Disorders, and The Denver Center for the Perform-

ing Arts.  Topics included definitions and nomenclature in voice analysis, algorithms for extraction

of parameters, high fidelity recording of microphone signals, computer file structures, sharing of

data bases, and development of test signals.  Attendance and contributions were by invitation, keep-

ing in mind a balance between industry and academia.  The following contributors were present:

David Berry, Ph.D. University of Iowa and NCVS
Timothy Curran, M.S. Private Voice Consultant
Dimitar Deliyski, Ph.D. Kay Elemetrics
Bruce Gerratt, Ph.D. UCLA VA Hospital
Wolfgang Hess, Dr. - Ing. University of Bonn, Germany
Yoshiyuki Horii, Ph.D. University of Colorado and NCVS
David Huang, Ph.D. University of Washington and Tiger Electronics
Jack Jiang, M.D., Ph.D. Northwestern University
Issam Kheirallah, M.A.Sc. University of Western Ontario, and Avaaz Innovations, Inc.
Jody Kreiman, Ph.D. UCLA VA Hospital
Jon Lemke, Ph.D. University of Iowa
Martin Milder, B.S. University of Iowa and NCVS
Paul Milenkovic, Ph.D. University of Wisconsin, CSpeech, and NCVS
Fred Minifie, Ph.D. University of Washington and Tiger Electronics
Ed Neuberg, M.S. Institute for Defense Analysis
Ying Yong Qi, Ph.D. University of Arizona
David Talkin, B.E.S. Entropic
Ingo Titze, Ph.D. University of Iowa and NCVS
William Winholtz, A.A.S. WJ Gould Voice Research Center,1 Wintronix and NCVS
Darrell Wong, Ph.D. WJ Gould Voice Research Center and NCVS

Dr. Wong, Coordinator of Technology Transfer at the National Center for Voice and Speech,

acted as chairman of the workshop and editor of the proceedings.  Dr. Titze, Director of the National

Center for Voice and Speech and Executive Director of the WJ Gould Voice Research Center, led

most of the discussions and served as author of the Summary Statement. In this Summary Statement,

only the Recommendations (pp 26-30) should be viewed as majority opinion. All other materials are

explanatory and the opinion of the author. The full proceedings may be obtained by writing to the

National Center for Voice and Speech,  Wendell Johnson Speech and Hearing Center, The University

of Iowa, Iowa City, Iowa 52242.

FORWARD

1 The Wilbur James Gould Voice Research Center is a division of The Denver Center for the Performing Arts.
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4   WORKSHOP ON ACOUSTIC VOICE ANALYSIS

Analysis of acoustic signals of the human voice has many purposes.  From a technological

standpoint, there is an ever-growing need to store, code, transmit, and synthesize voice signals.  The

telecommunications industry has dichotomized transmission of information into either voice or data,

suggesting that voice signals are a class of their own.  From a basic science standpoint, investigators

have traditionally studied the microphone signal to understand speech production and perception,

given that the acoustic signal is the common link between them.  Finally, from a health science

standpoint, the human voice has been shown to carry much information about the general health and

well-being of an individual.  Our voice reveals who we are and how we feel, giving considerable

insight into the structure and function of certain parts of the body.

This workshop was limited to voice analysis rather than speech analysis, the focus being on

the extraction of information about the source of sound from a microphone signal.  Thus, no attempt

was made to discuss or summarize general speech analysis dealing with vocal tract information.  For

a complete review of speech analysis, the reader is referred to the three volumes of selected papers

published by the Acoustical Society of America (Miller et al., 1991; Atal et al., 1991 and Kent et al.,

1991).

More specifically, the workshop was a response to an urgency expressed by a group of

voice scientists, voice clinicians, and manufacturers of instrumentation to reach some consensus on

utility, feasibility, and standardization of voice perturbation methods.  There has been much expec-

tation and much disappointment in what perturbation analysis can offer for diagnosis and assessment

of voice disorders.  This workshop gives some of the underlying reasons for both the high expecta-

tion and the limited success.

Perturbation analysis is based on the premise that small fluctuations in frequency, ampli-

tude, and waveshape are always present in a voice signal, reflecting the internal “noises” of the

human body.  Every attempt on the part of the speaker to produce a perfectly steady sound results in

an aperiodic waveform.  Movements of tissue and air are modulated by the irregular internal motion

of electrical impulses, fluids, and cells within an organ.  Thus, what might appear to be steady

movement or posture on a macroscopic scale is often pulsatile movement on a microscopic scale, as

evidenced by twitching of muscles, expansion and contraction of blood vessels, and beating of cilia

to transport fluids.  If we could shrink to microscopic dimension and travel through the human body,

we would see that much of the physical plant (the hydraulic, electrical, and chemical systems) exhib-

its complex back-and-forth motions (oscillations).  These micromovements impose fluctuations on

what would otherwise be smooth and steady activity.

Voice production can be thought of as the activation of an entire system of coupled oscilla-

tors.  The intent to vocalize activates motor commands that are responsible for the neural inputs to an

INTRODUCTION
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array of biomechanical, neural, and acoustic oscillators (large box in Figure 1).  The vocal folds are

the primary oscillating system that produce what we might call the carrier signal (the glottal air-

flow).  All other oscillators can then be thought of as modulators of the carrier signal.  Some of the

modulations are nearly sinusoidal (respiratory, heart beat) but many are high dimensional (action

potentials of muscles, air vortices, mucus in motion).  Yet others are passive oscillators (tracheal

resonator, supraglottal vocal tract, various sinuses) that can influence the primary oscillating system.

We can assume that the system of coupled oscillators contains and releases information

about the human body; in particular, about its genetics, development, age, disease, language, culture,

food and drug intake, and response to the environment (Figure 1).  Voice perturbation analysis has

the goal of extracting some of this information from the voice signal.  The goal is not unlike that of

extracting information about the universe from cosmic radiation, or the earth’s interior from seismic

signals.  In all cases, the procedure is extremely difficult and usually requires considerable a priori

knowledge about the modulations to be extracted.

Therein lies the primary problem of voice perturbation analysis in its present state.  We

don’t know how to measure or classify the multiplicity of perturbations and modulations that are

observed simultaneously.  Many studies are needed to isolate the individual contributions of each

oscillator.  Some of these studies are underway (Orlikoff, 1990; Titze, 1991).  We also don’t know

how to apply simple concepts of periodicity and aperiodicity to voice signals.  Learning how to

quantify aperiodicity is a central focus of this document.

An abundance of terminology tends to mystify what is known about irregularity in voice

production.  It is appropriate, therefore, to establish working definitions of a few commonly used

vocal terms.  A more general glossary of terms is included at the end of this summary statement.

Figure 1.
A list of biological
oscillators
involved in voice
production and
factors that may
influence them.
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NOMENCLATURE AND DEFINITIONS

We begin with a few terms that describe the general phenomenon of irregularity in the human

voice, but do not (and probably should not) have precise mathematical definitions.

Descriptive Terminology

A perturbation is usually thought to be a minor disturbance, or a temporary change, from

an expected behavior.  For example, if something is expected to move in a circular orbit but assumes

a slightly elliptical path, we say the circular orbit is perturbed.  If a person is chewing and encounters

a small, hard object in the food, the normal chewing motions are momentarily perturbed.  Perturba-

tions are usually such that they do not alter the qualitative appearance of a visual or temporal pattern,

at least not indefinitely.  They are small irregularities that are for the most part overlooked.

A fluctuation suggests a more severe deviation from a pattern.  It reflects an inherent insta-

bility in the system.  Whereas a perturbed system usually returns to normal (it is attracted to a stable

state), a fluctuating system is somewhat out of control; it cannot find a stable state.  Examples are a

hand tremor, a flag blowing in the wind, or a car fishtailing on a slippery road.  Closer to home in

terms of the human voice, a vocal tremor or vibrato may be described as a fluctuation in fundamental

frequency and amplitude.  It is more than a perturbation because there is no ultimate stabilization of

fundamental frequency or intensity toward some constant value.  The tremor or vibrato is a pattern

itself, rather than a small deviation from a pattern.

Variability is the ability of someone or something to vary, by design or by accident.   More

formally, it is the amount of variation as determined by a statistical measure.  In a golf swing, a basic

motion may be repeated over and over again, but conditions of the ground surface, the weather, the

ball, the club, or the player may alter the precise motion.  Thus, variability may cause the final result

(the resting position of the ball) to be far from the expected result.  However, depending on how

intelligently human variability is used, the final result can also be better than expected.  If the player

uses variability in muscle activity to compensate for wind and surface variability intelligently, the

overall deviation (in the final ball position) may be less than the deviation that would be obtained by

a perfectly consistent robot.  Thus, variability may be used to fight variability, but it can also have a

catastrophic effect if allowed to run rampant.   (For a discussion of variability in speech, see Perkell

& Klatt, 1986).

Jitter refers to a short-term (cycle-to-cycle) perturbation in the fundamental frequency of

the voice.  Some of the early investigators (e.g., Lieberman, 1961, 1963) displayed speech wave-

forms oscillographically and saw that no two periods were exactly alike.  The fundamental fre-

quency appeared jittery; hence, the term jitter.  Shimmer was then invented as a companion word for

amplitude-jitter; i.e., a short-term (cycle-to-cycle) perturbation in amplitude (Wendahl, 1966).
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A problem has arisen in trying to make a precise mathematical definition stick for jitter or

shimmer.  What is meant by short term, for example, and what kind of variability measure should be

adopted?  There are many ways of quantifying a deviation from an expected pattern or trend.  This

has led to a proliferation of mathematical definitions for jitter and shimmer.  We believe that it is best

to leave the terms as they are (as generic descriptors of fundamental frequency and amplitude vari-

ability) and use more standard terminology of engineering and statistics to quantify error measure-

ments (see the later section on perturbation measures).

An unfortunate misunderstanding can arise for singing teachers who use the term shimmer

to describe a beautiful bell-like vocal quality.  A shimmering voice is aesthetically most pleasing in

this context.  As a random short-term amplitude perturbation, however, shimmer is not particularly

pleasing to listen to.  It is usually perceived as a crackling or buzzing sound, and in extreme cases, it

can become very unpleasant and rough.  It is important to communicate, therefore, the context in

which the term shimmer is used.

Tremor is a low-frequency fluctuation in amplitude or frequency (or both).  Its origin is

usually neurologic.  Physiologic tremors in the body have fluctuation rates between 0-15 Hz, but not

all are perceived the same way auditorily when they are part of the vocal signal.  Thus, a low-

frequency tremor (0-3 Hz) is perceived as a wow.  This is also the term used by the recording industry

to describe variability in the speed of the tape drive of an audio recorder.  A companion term, flutter,

describes the variability associated with tape contact on the recording head.  In the voice literature,

flutter has been used to describe neurologic fluctuations in the 9-15 Hz range (Aronson et al., 1992).

Flutter appears to be associated with rapid onset and offset of phonation, reflecting the natural oscil-

lating frequency of the adductor-abductor control system in phonation.  Some singers tend to culti-

vate this natural frequency in the production of trillo  - a fast, fluttering ornament typically used in

renaissance music (Hakes et al., 1990).

In the mid-range rate (4-8 Hz), vocal tremor is part of the natural quality of the human

voice, provided it’s extent does not exceed certain limits.  Synthesis has shown that without a small

degree of tremor, steady vowel production has a buzzy quality.  There is something about a low

frequency fluctuation in the voice that makes it warm and acceptable.  An exaggerated extent of

vocal tremor, on the other hand, is considered pathologic (Koda & Ludlow, 1992).

The origin of vocal vibrato is not completely understood, but some evidence is beginning to

show that vocal vibrato may be a stabilized physiologic tremor in the laryngeal muscles (Niimi et al.,

1988; Ramig & Shipp, 1987).  It is conceivable, though speculative at this point, that a natural vocal

vibrato can be cultivated from a 4 to 6 Hz physiologic tremor in the cricothyroid and thyroarytenoid

muscles.  This would require some mechanical load or reflex loop to stabilize irregular movement

(Titze et al., 1994).

For the description of pathologic voices, several terms have found universal appeal.  Rough-

ness refers to an uneven, bumpy quality.  It results from irregularity in the energy contained in a

critical band of the auditory system (Terhardt, 1974).  Periodic sounds (such as vocal fry) can have
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roughness, but more often there is a lack of periodicity.  Breathiness is a vocal quality that contains

the sound of breathing (expiration, in particular) during phonation.  Acoustically, there is a signifi-

cant component of noise in the signal due to glottal air turbulence.  Sometimes the term hoarseness

is used to describe the combination of roughness and breathiness.

The terms described thus far - perturbation, fluctuation, variability, jitter, shimmer, tremor,

wow, vibrato, flutter, roughness, breathiness, hoarseness, and several others defined in the glossary -

have no mathematical definitions.  No numbers or physical units of measurement need to be attached

to them, although some of them can be rated psychophysically.  Nevertheless, they serve a purpose in

describing vocal phenomena and the associated physical processes.  At this point, some additional

terms will be reviewed that have mathematical definitions.

Periodicity, Subharmonics, and Modulation

A series of events is termed periodic if the events cannot be distinguished from one

another by shifting time forward or backward by a specific interval nT
o
,

                                                                  f(t + nT
o
)  =  f(t)                                                            (1)

where n is any positive integer and T
o
 is the period.  T

o
 must be the smallest value possible to be

deemed the fundamental period.  Equation (1) can never be strictly satisfied in a voice signal.  All

vocal events tend to be aperiodic. The term quasi-periodic is sometimes used to suggest that there is

only a small deviation from periodicity.  It must be kept in mind, however, that quasi-periodicity is

simply a special case of aperiodicity.  Furthermore, in physics the term quasiperiodic has the special

meaning of the superposition of two or more periodic signals with incommensurate (non-integer

ratio) frequencies.  Hence, we prefer not to use the term, but adopt nearly-periodic to avoid confu-

sion.

A series of events is termed cyclic if the events recur, but not necessarily in periodic fashion.

A cyclic event is recognized on the basis of a pattern that involves neighboring points on a waveform

(e.g., a zero crossing, a maximum value, a minimum value).

A cyclic parameter is a construct of cyclic events (e.g., inter-pulse-interval, open quotient,

skewing quotient, peak-to-zero amplitude, peak-to-peak amplitude, maximum flow declination rate).

Some of these parameters are identifiable only after the acoustic waveform has been inverse filtered,

which is the process of removing the vocal tract resonances from the waveform to obtain the glottal

airflow (Rothenberg, 1973).  In a sinusoidal waveform, the amplitude A, the period T, and the fre-

quency 1/T are obvious cyclic parameters and have precise definitions.  In a complex periodic wave-

form, the fundamental period T
o
 and fundamental frequency F

o
 = 1/T

o
 also have exact definitions

(equation 1), but amplitude can be defined in a variety of ways.  Traditionally, the peak value (maxi-

mum positive or negative) and the peak-to-peak value (maximum positive to maximum negative)

have been used.  As alternatives, Hillenbrand (1987) used the root-mean-squared (RMS) intensity in
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each cycle as the representative amplitude, while Milenkovic (1987) used a gain factor k calculated

as part of a cycle to cycle least squared error comparison.

A cyclic parameter contour is a time series of any cyclic parameter (e.g., F
o
 contour, ampli-

tude contour, open quotient contour).  For periodic signals, the contour is a constant, by definition.

For aperiodic signals, the cyclic parameter contour can take on many different shapes, becoming a

signal of its own.  Figure 2 shows an F
o
 contour extracted from a voice signal (top curve).  The F

o

contour is highly magnified to show the finest detail in perturbation.  The subject (normal male)

sustained an [b] vowel as steady as he could for about 12 seconds at a mid-range value of 99.8 Hz.

The target F
o
 was 98 Hz, a G

2
 on the keyboard.  Time is labeled in number of cycles (1195 total)

instead of seconds because 1 point is plotted for every cycle of vocal fold vibration.  Note that the

range of frequency variation is 96.7 Hz to 102.4 Hz, about ±3%, but this range is attributed mainly to

Figure 2. A
fundamental
frequency
(F

o
) profile

used for
perturbation
analysis. The
subject was a
normal adult
male pho-
nating a
steady [b]
vowel at
approxi-
mately 100 Hz
for about 12
seconds.
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one burst of instability in the middle of the contour.  Over the rest of the utterance, the F
o
 variation

was considerably smaller. (Other graphs in Figure 2 will be discussed later).

Now let x
i
 represent an arbitrary cyclic parameter, for which some stylistic contours are

illustrated in Figure 3.  Part (a) shows an irregular contour, similar to that of Figure 2 just discussed,

but with fewer cycles.  Part (b) shows a regular “up-down” pattern that is often seen in voice signals,

and parts (c) and (d) show a linear and sinusoidal trend, respectively.  The “up-down” pattern in part

(b) suggests the presence of a subharmonic frequency F
o
/2, or a period doubling 2T

o
.  Clearly, if only

every other point were plotted in the contour, a constant would result and periodicity would be

achieved.  Thus, the true period is doubled.  In equation (1), period doubling is represented by using

only the even values of n.

Figure 3. Modulations of a cyclic
parameter xi around the mean

value (a) random, (b) alternating,
(c) linear trend, and (d) sinusoidal.
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The “up-down” sequence is also referred to as a period-2 sequence in nonlinear mechanics.

This nomenclature can be extended to define a period-3 sequence (the pattern would be high-low-

middle) or to a period-4 sequence (high-low-very high-very low), and so on.  The terms diplophonia,

triplophonia, quadruplophonia have also been used in the description of these sequences, but the

terminology has not been universally adopted.  In general, a period-n sequence in the parameter

contour would be called multiplophonia if it were important to retain reference to the word “phona-

tion” in the nomenclature.  However, “period-n phonation” or “phonation with an Fo/n subharmonic”

accomplishes the same objective.

But why isn’t Fo/n simply redefined as the fundamental frequency?  That depends on the

relative energy contained in the subharmonic.  Often the period-n variations of a cyclic parameter are

small, suggesting that “on average” the cyclic parameter has not changed.  Furthermore, the auditory

perception of the cyclic parameter (e.g., pitch in the case of Fo or loudness in the case of amplitude)

may not have changed, but rather a dimension of roughness or some other quality has been added.

Their frequencies are commensurate (in integer ratio) with the primary frequencies and may or may

not be perceived as separate pitches.

In contrast to period-n phonation or multiplophonia, the term  multiphonia is used to sug-

gest the presence of several independent phonations (sound sources).  Thus, biphonia would contain

two independent sources, such as the true vocal folds and the false vocal folds, and triphonia would

contain three independent sound sources (perhaps the addition of a glottal whistle).  Their frequen-

cies would not have to be commensurate. However, different modes within the same sound source

may also generate independent frequencies, making the identification of the sound sources a non-

trivial matter.

The term modulation is used to quantify the systematic change of a cyclic parameter (usu-

ally frequency or amplitude) of a periodic signal.  The periodic signal (usually a sinusoid) is called

the carrier in communication theory.  In phonation, the carrier is the sequence of periodic airflow

pulses emitted from the glottis, and the modulation is the slower variation of cyclic parameters dis-

cussed in the previous section.  In radio communication, the entire voice signal modulates an elec-

tronically generated sinusoid for wireless transmission (typically in the MHz range), suggesting that

modulations can be stacked up (layered) upon each other.  The carrier of one signal becomes the

modulation of another.
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Figure 4a demonstrates an amplitude modulation (AM) and Figure 4b a frequency modula-

tion (FM) of a series of glottal pulses.  Mathematically, the modulation extent is defined as

for sinusoidal amplitude modulation, and

for sinusoidal frequency modulation, where A
1
 and A

2
 are the largest and smallest amplitudes, re-

spectively, and T
1
 and T

2
 are the largest and smallest periods in the signal.  Note that modulation

extent approaches 1.0 (100%) when either A
2
 or T

2
 approaches zero.  Such an extreme condition

violates a basic principle of modulation, however, because the carrier signal momentarily loses its

amplitude completely for AM, whereas the frequency (1/T) momentarily approaches infinity for FM.

Practical modulations are usually well below 100%.  In a vocal vibrato, for example, a 3% frequency

modulation is typical.  Amplitude modulations can be larger in vocal signals, but seldom exceed

50%.

For modulation extent to be measurable in a voice signal, the modulation frequency F
M
 (the

number of modulation cycles per second) should be well below the carrier frequency F
c 
=

 
F

o
. (In the

theoretical limit, F
m
/F

c
 is governed by the Nyquist frequency). If F

m
 is too high, there is insufficient

sampling of the modulation envelope and large errors may occur in its detection.  Such is the case

with subharmonic modulations, which are often undersampled in a voice signal (note that there are

only two points per cycle in Figure 3c).  Vibrato and tremor, on the other hand, are usually ad-

equately sampled because their frequencies are naturally well below F
o
 (see Figure 3d as an ex-

ample).

Figure 4. (a) Amplitude modulation
(AM), (b) frequency modulation (FM)

of a series of glottal pulses.
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Perturbation Functions

As before, let x
i
 to be a cyclic variable of vocal fold vibration that has been extracted from

the i-th vibratory cycle.  A window of observation is defined, containing N cycles of vibration, so that

the subscript i can range from 1 to N in the observation window.

The mean value of the cyclic variable over the window of observation is defined as

If the mean value is intended to be a constant, as in steady vowel phonation, then a zeroth-order

perturbation of the i-th cycle can be defined as

(The term zeroth-order is used because a constant is basically a zero-order pattern or trend).  Higher-

order perturbation functions are defined as the following finite differences:

In general, since the first subscript represents the order n of the perturbation function and the second

subscript represents the i-th cycle, higher-order (n+1) perturbation functions are generated recur-

sively as
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where K is a normalization factor that keeps the coefficient of x
i
 positive and unity in each perturba-

tion function.  Note that with this normalization, all perturbation functions are zero when x
i
 is a

constant.

The perturbation functions can be used to remove known or assumed trends in the cyclic

parameter contour.  The zeroth-order perturbation function removes nothing, the first order perturba-

tion function removes a constant (the mean value x), the second order function removes a linear

trend, the third order function removes a quadratic trend, and so on.  In general, the n-th order

perturbation function removes a polynomial trend of order n-1 in the contour.

Consider a linear trend as shown in Figure 3c.  It is represented by the relation

where k is the rise per cycle.  It is easily seen from equation (6) that P
1i
 = k and that all higher-order

perturbation functions in this example are zero.  Thus, the first order perturbation function extracts

the linear trend, whereas the higher order perturbation functions remove it.  The second graph from

the top in Figure 2 shows a second order perturbation function computed from a human voice. The

scaling is smaller than that of the contour because it is an absolute scaling (+10% deviation from the

mean value).  Note that the short-term fluctuations of the contour are retained, but the long-term

trends are removed.  For example, the gradual downward slope of the F
o
 contour in the beginning

one-third of the utterance has been removed.  So has the tremorous variation that is most noticeable

in the middle of the contour.  All that is left in the second-order perturbation is the short-term “noise”.

If a linear trend is deliberately produced by the voice, such as a uniform F
o
 glide between

two pitches in a specified amount of time, then k is a known quantity.  It can simply be inserted into

the perturbation formulas.  For example, the first-order perturbation then becomes

which is now known as the deviation from a linear trend.  If a linear trend is suspected as an inherent

pattern, but k is not known, it can be computed from the data by linear regression.  This is a well-

known statistical procedure (Hays, 1988).  Furthermore, all patterns with forward predictability (e.g.,

a sinusoid, a damped sinusoid, an exponential) can collectively be removed by linear predictive

coding (LPC), with only random (or unpredictable) events remaining in the residual perturbation

function.  LPC analysis is based on the assumption that x
i
 can be predicted from a weighted sum of

M previous samples,

where the a’s (the predictor coefficients) are determined by a linear least squares fit to the contour

(Markel & Gray, 1976).
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Some investigators have opted to use a hybrid between the zeroth-order perturbation func-

tion and the second-order perturbation function,

This function computes the deviation from a local mean.  If 2m + 1 = N, the total number of cycles

in the window, the perturbation function becomes P
oi
 (equation 5).  If m = 1, then the summation

becomes the three-cycle local average used by Koike (1973).  For a two-cycle local average, the j =

0 value is omitted and P
2i
 is obtained (equation 7).  An 11 cycle average (m = 5) has also been used

(Takahashi & Koike, 1975).

The autocorrelation function of the cyclic parameter contour serves a purpose contrary to

that of a trend remover (such as the second-order perturbation function). It removes the short-term

cycle-to-cycle “noise” but keeps the long term patterns.  Mathematically, the autocorrelation func-

tion is computed as

where the brackets indicate average (expected) values over a fixed window of observation. Basically,

the autocorrelation function is the contour multiplied by a delayed version of itself, the delay being

one period, two periods, three periods, and so on (Rabiner & Schafer, 1978; Bendat & Piersol, 1986).

In Figure 2 (third waveform from top on left side), the computation was done from 0 delay periods to

597 delay periods.  The autocorrelation is always maximum for 0 delay periods (the function corre-

lates perfectly with itself if not delayed), where it has the value 1.0.  At all other points, it is greater

than -1.0 and less than +1.0 if properly normalized.  Note that the fluctuation seen in the autocorrelation

function indicates that a small amount of a “vibrato” is present in the subject’s voice.  This is percep-

tually below threshold.  The subject intended to produce a straight tone, but since he was vocally

trained to sing with vibrato, he could not completely suppress it.  This is a good example, then, of a

case in which acoustic analysis “digs out” something that is easily lost in both the raw F
o
 contour and

the auditory perception.

The histogram (bottom left corner in Figure 2) shows a distribution of the cyclic parameter

values for all of the 1,195 cycles.  On the vertical axis is the number of the occurrences of the

parameter value in a narrow range (bin).  Note that the greatest number of occurrences of F
o
 are near

the midrange value (99.8 Hz), whereas large deviations from the midrange occur infrequently.  The

distribution is nearly Gaussian, suggesting that perturbations are primarily random.  In contrast, the

distribution would be bimodal (two major peaks) if a subharmonic or a strong vibrato were present in

the F
o
 contour.
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Finally, the power spectrum of the parameter contour (bottom right) is a useful display of

the dominant frequencies that modulate the contour.  Note that a frequency of about 5 Hz stands out

in this spectrum.  This is the frequency of the small amount of vibrato in the voice.  All other peaks

in the power spectrum are at least 10 dB lower and do not represent significant components.  Again,

subharmonics, tremors, or any other modulations can easily be detected in this type of display.

In summary, a cyclic parameter profile of the type shown in Figure 2 is a useful tool in voice

analysis.  It helps to quantify visually what is perceived aurally.  A similar profile can be constructed

for amplitude variation or for any other cyclic parameter (open quotient, maximum flow declination,

skewing quotient, etc.).

Perturbation Measures

A perturbation measure is an effective value of the overall perturbation in the cyclic con-

tour.  For example, the standard deviation from the mean is

This measure can also be identified as the root-mean-squared (RMS) value of the zeroth-order per-

turbation function (recall equation 5) .

The mean rectified value, or mean absolute value, of the zeroth-order perturbation is de-

fined as

This measure of perturbation is fundamentally not much different from σ
o
, but it is a little easier to

compute because it does not involve squares and square roots.  Also, it does not weight outliers (large

deviations from the mean) as heavily as σ
o
 because first-power terms rather than second-power terms

are used in the summation.

In general, a collection of perturbation measures can be written as

with δ
1
 being the most frequently used measure in the literature.  In Figure 2, σ

o
 has the value of

0.832%, σ
1
 has the value of 0.419%, and δ

2
 has the value of 0.316%.
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Both δn and σn are magnitude perturbation measures only.  The squaring and absolute mag-

nitude operations remove all information about the direction in which the cyclic variable deviates

from the mean value.  Consider again the four contours shown in Figure 3.  They appear quite

different visually but could all produce rather similar perturbation measures.  The magnitude pertur-

bation measures σn and δn tell us little about the patterns in the perturbations functions.  They are

totally insensitive to any regularity that may exist in the deviations.  Indeed, the only pattern they

relate to is a constant, the mean value x.  This is a serious limitation for many applications in voice

perturbation analysis because the patterns may reveal more about the nature of a disorder, or special

voice characteristic, than a simple magnitude error measure.  (For a more detailed discussion of

magnitude versus directional perturbation measures, see Pinto & Titze, 1990).

Several investigators have used a harmonics to noise ratio (Yumoto et al. 1982; Cox, 1989),

a signal to noise ratio (Klingholz, 1987), or a normalized noise energy (Kasuya et al. 1986) to quan-

tify the aperiodic portion of the voice signal.  The harmonic energy is first defined as

where N is the number of cycles, T is the greatest period found among the N cycles, and f
A
 is the

average acoustic waveform per cycle (obtained by padding all cycles to the maximum period with

zeros and averaging point by point from event marker to event marker).  The noise energy is then

defined as

where f
i
 is the waveform in the i-th cycle, and the harmonics to noise ratio is

If the HNR is used as a perturbation measure, it needs to be noted that this measure is not specific to

any cyclic parameter.  Therein lies its asset as well as its liability.  One cannot tell if the period, the

amplitude, or the waveshape is perturbed.  Simple Gaussian noise added to a periodic waveform can

decrease the HNR, as will jitter or shimmer.  Thus, the measure correlates best with an overall per-

ception of “noisiness and roughness” in the signal, regardless of what the source might be.  New

approaches described by Qi (1992) and Qi et al. (1995) includes a time-base correction that mini-

mizes the effect of jitter as a contributor to noise.  Thus, these approaches begin to separate the

sources of noise in the HNR measure.
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SIGNAL TYPING

The most interesting voice signals are encountered when vocal fold vibration is highly influ-

enced by nonlinearity in tissue and air movement, or when coupled oscillator modes become

desynchronized.  For example, two modes of the same vocal fold, or two modes between opposite

folds, may compete for dominance.  A resolution to the mode conflict is what we have described as

period-n phonation, whereby each mode is allowed to have its turn, so to speak, making the overall

period much longer.  Another resolution is a long-range modulation (over several cycles), the fre-

quency of which is incommensurate with F
o
.  In some cases, however, there is no resolution at all in

terms of any real or apparent periodicity, and oscillation becomes chaotic.

In the language of nonlinear dynamics, a qualitative change in the behavior of a dynamical

system is known as a bifurcation.  It usually occurs when some parameter of the vibrating system is

changed gradually (e.g., lung pressure, vocal fold tension, or asymmetry between the vocal folds).

Figure 5 shows sketches of how glottal flow waveforms transform after  two successive bifurcations.

The first bifurcation is seen as a period doubling (part a to part b) whereas the second is seen as a

total loss of periodicity (part b to part c).

Figure 5. A series of glottal
pulses showing evidence of

bifurcation. (a) periodic
vibration, (b) period doubling,

(c) chaotic vibration.
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The following classification scheme is adopted here to recognize the nature of bifurcations

in voice signals.  The classification is central to all other considerations in acoustic voice analysis.  It

follows the general principles of nonlinear dynamics of coupled oscillators.

Type 1 signals - nearly-periodic signals that display no qualitative changes in the analysis

segment; if modulating frequencies or subharmonics are present, their energies are an order of mag-

nitude below the energy of the fundamental frequency.

Type 2 signals - signals with qualitative changes (bifurcations) in the analysis segment, or

signals with subharmonic frequencies or modulating frequencies whose energies approach the en-

ergy of the fundamental frequency; there is therefore no obvious single fundamental frequency

throughout the segment.

Type 3 signals - signals with no apparent periodic structure.

A spectrogram is useful in making the classification.  For example, Figure 6 shows a spec-

trogram of a patient with hyperfunctional childhood dysphonia.  The fundamental frequency is 300

Hz.  Bifurcations can be seen to occur around 400 ms (the beginning of a period-3 phonation),

around 900 ms (return to the original), and around 1100-1200 ms (beginning of a mixture between

period-3 and period-4 phonation).  The signal is therefore classified as type 2.

Figure 6.
Narrow-band
computer
spectrogram
for a patient
with hyper-
functional
childhood
dysphonia.
Abrupt
transitions to
different
phonatory
regimes are
visible,
indicating
bifurcations in
vocal fold
vibration.
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A fundamental frequency profile, similar to that of Figure 2, is shown for this dysphonic

patient in Figure 7.  Note that bifurcations can be identified in the Fo contour as segments where the

Fo extractor is uncertain about the constant 298 Hz value.  In two cycles the extracted Fo drops down

to 98 Hz, close to the Fo/3 subharmonic.  In one case, the extracted Fo jumps to 420 Hz.  In general,

Fo is extracted reliably only in the three segments where the waveform is nearly periodic.

The second-order perturbation function has wild fluctuations.  It is clear from this display

that a single perturbation measure for the entire segment is meaningless and that the visual displays

carry more information than can be characterized by a single number.

As another example, analysis was performed on the waveform of a patient with unilateral

laryngeal nerve paralysis (Figure 8).  The waveform itself shows intermittent segments of low fre-

quency modulation (segments b and d).  The fundamental frequency is 285 Hz and the modulation

frequency is 32 Hz.  If only segments a, c, and d had been acquired and analyzed, the signal would

have been classified type 1.  As it is, it is clearly a type 2 signal.

Figure 7.
Fundamental

frequency
(Fo) profile for

the patient
with hyper-
functional
childhood

dysphonia.
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Figure 9 shows its corresponding narrow-band spectrogram.  The 32 Hz modulation is seen

as closely-spaced horizontal lines on both sides of the three harmonics, i.e., as sideband frequencies.

These frequencies are not in exact integer ratios of F
o
.  There are between 8 to 10 short lines between

each of the long lines.

Figure 8. Micro-
phone signal of a
patient with
unilateral
lyarngeal nerve
paralysis. Parts (a)
to (e) should be
viewed serially,
200 ms per
segment, for a
total of 1s (After
Herzel et al,
1994).

Figure 9.  Narrow-
band spectro-
gram of a
patient with
unilateral
laryngeal nerve
paralysis,
corresponding to
the waveform in
Figure 8.
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In the F
o
 profile, shown in Figure 10, the F

o
 contour again shows some large fluctuations in

the segments where 30 Hz modulation takes place.  The F
o
 extractor is trying to recognize the pres-

ence of a 285 Hz fundamental, but gets confused with the modulation frequency.  The second order

perturbation function again exhibits large fluctuations (much greater than +10%), indicating that

perturbation measures will be unreliable.  Finally, the power spectrum of the F
o
 contour shows the

modulation frequency as a strong peak between 30 and 40 Hz.

Figure 10.
Fundamental

frequency (Fo)
profile for the
patient with

unliateral
laryngeal nerve

paralysis,
corresponding to

Figures 8 and 9.
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Figure 11. Phase portrait of the
patient with unilateral laryngeal
nerve paralysis. The micro-
phone signal was low-pass
filtered above the mean F

o
 and

time-delayed samples were
used to plot two "independent"
variables.

A  new method of analysis has recently been applied to determine the structure in complex

vibrations.  By examining many events in so-called phase space (a space that contains all of the

independent variables of a system), a path can be observed to which the system is attracted.  This

attractor is the locus of points in phase space as time marches on (Figure 11).  It often takes thou-

sands of observation points before any structure can be detected.  Figure 11a shows the attractor for

a normal voice, whereas Figure 11b shows an attractor for the voice of the aforementioned patient

with nerve paralysis.  The modulations create the appearance of a torus rather than a narrow ring (a

limit cycle).  Interested readers in nonlinear dynamics and phase portraits are referred to Bergé et al.

(1984) or Moon (1987) for an introduction to the subject.  For applications of nonlinear dynamics to

vocal fold vibration, the articles by Baken (1990), Herzel et al. (1991), Titze et al. (1993), Berry et al.

(1994), and Herzel et al. (1994) are useful and interesting reading.
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The traditional clinical goals of constructing test utterances are to determine (1) how voice

effects speech intelligibility and communication effectiveness and (2) what insight can be gained

about laryngeal health or general body condition.  An additional pedagogical goal would be to deter-

mine (3) how the effectiveness of vocal training can be quantified.

Historically, clinicians have used a battery of test utterances that progress from vowels to

isolated syllables or words to complete sentences or paragraphs.  Almost everyone agrees that the

tasks must reveal control of pitch, loudness, and some aspect of vocal quality.  In addition, the

interaction among respiratory, phonatory, and articulatory components of speech are important to

most clinicians.

Table 1 shows a set of utterances.  The top half of the table lists a variety of nonspeech

utterances, and the bottom half lists some speech utterances.  The battery includes most of the utter-

ances used historically but expands the list significantly in the direction of dynamic testing.  Phonatory

glides are introduced for the assessment of coordinated muscle activity in the larynx and respiratory

system.

All utterances may be customized to an individual’s Voice Range Profile (VRP).  This VRP

should be obtained first to establish the bounds for further testing.  Low, medium, and high pitch can

then be defined as some percentage of the F
o
 range, say 10%, 50%, and 80%.  The same can be done

to define soft, medium, and loud intensity.  With these definitions, sustained vowels are elicited at

strategic locations within the VRP to determine phonatory stability.  This is followed by [s] and [z]

consonants for respiratory competence.  Finally, a series of pitch, loudness, adduction, and register

glides are executed to determine range, speed, accuracy, and stability in phonation.  Tests of this kind

were discussed by Kent et al. (1987).

In the second half of the table, speech and song material is used with increasing phonetic,

emotional, and artistic complexity.  After traditional counting, an all-voiced sentence is first used to

test F
o
 control independent of adductory control.  This is followed by a sentence with frequent voic-

ing onset and offset tailored to specific larynges.  The “Rainbow Passage,” an often-used paragraph

in speech diagnostics for English, is then administered as a de facto standard.  At this point, some

parent-child speech is attempted.  Exaggerated F
o
, intensity, and register patterns emerge in this test

as subjects mimic typical parentese, such as those found in the “Goldilocks” story.  Further testing of

extreme F
o
 and intensity patterns (with highly expressive vocalizations) comes with a dramatic reci-

tation, such as one of Shakespeare’s soliloquies.  Finally, a portion of a familiar song (“Happy Birth-

day”) is sung in both modal and falsetto register to examine “heavy” and “light” production in a

singing mode.  The use of falsetto singing has been found to be useful in detecting swelling of vocal

fold tissue (Bastian et al., 1990).

TEST UTTERANCES
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 A major unanswered question is whether a person’s ability to speak or sing can in any way

be assessed with the nonspeech tasks.  One would hope that wide ranges of pitch and loudness in the

Voice Range Profile, for example, would predict highly expressive intonation, stress, and loudness

patterns in speech, but there is no guarantee of that.  For assessment of voice disorders, large inaccu-

racies in pitch and intensity glides should be a predictor of abnormal prosodic contours in speech,

but again, this remains an open research question.

Table 1
Proposed Test Utterances

N O N S P E E C H
Voice Range Profile defines test frequencies and intensities (low = 10% of F

o
 range, medium = 50% of F

o
 range, high = 80% of F

o

range; soft = 10%  of intensity range, medium = 50% of intensity range, loud = 80% of intensity range)

Sustained [b], [i], [u] Vowels
1. low, soft, 2s
2. low, loud, 2s
3. high, soft, 2s
4. high, loud, 2s
5. medium high, medium loud, 2s
6. comfortable pitch and loudness, 2s
7. comfortable pitch and loudness, maximum duration

Sustained [s] Consonant
comfortable pitch and loudness, maximum duration

Sustained [z] Consonant
comfortable pitch and loudness, maximum duration

Pitch Glides
1. low-high-low, one octave, 0.25 Hz
2. low-high-low, one octave, 1.0 Hz
3. low-high-low, one octave, maximum rate

Loudness Glides
1. soft-loud-soft, 0.25 Hz
2. soft-loud-soft, 1.0 Hz
3. soft-loud-soft, maximum rate

Adductory Glides [b] and [hb]
1. onset-pressed-offset, 0.1 Hz
2. onset-pressed-offset, 2.0 Hz
3. onset-pressed-offset, maximum rate

Register Glides
1. modal-pulse-modal, 0.1 Hz
2. modal-falsetto-modal, 0.1 Hz
3. modal-falsetto-modal, maximum rate, as in yodeling

S P E E C H
Counting from 1 to 100, comfortable pitch and loudness
All voiced sentence, “Where are you going?”, soft, medium, loud
Sentence with frequent voice onset and offset “The blue spot is on  the key again”, soft, medium, loud
Oral reading of “Rainbow Passage”
Descriptive speech, “Cookie Theft” picture
Parent-child speech, “Goldilocks and The Three Little Bears”
Dramatic speech involving deep emotions (fear, anger, sadness, happiness, disgust)
Singing part of “Happy Birthday to you”, modal and falsetto register
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The workshop participants discussed and approved a number of recommendations.  They are

divided into several subheadings dealing with classification of signals, extraction of cyclic param-

eters, test utterances, acquisition of signals, file formats, and data base sharing.  Whenever references

are given, they are not intended to be the original or most authoritative, but those that contain more

detailed explanations by the workshop participants and their colleagues.

A. Classification of Signals and General Analysis Approach

  A1. It is useful to classify acoustic voice signals into three types.  Type 1 signals are nearly-

periodic:  type 2 signals contain intermittancy, strong subharmonics or modulations; type 3 signals

are chaotic or random.  A spectrogram, a phase portrait, or a cyclic parameter contour is useful in

making the classification.

  A2. For type 1 signals, perturbation analysis has considerable utility and reliability.  As a

practical guideline, perturbation measures less than about 5% have been found to be reliable (Titze

& Liang, 1993).

  A3. For type 2 signals, visual displays (e.g., spectrograms, phase portraits, or next-cycle

parameter contours) are most useful for understanding the physical characteristics of the oscillating

system. Perturbation measures by themselves are unreliable and contain little pattern information.

Thus, assessment of voice disorders and phonatory characteristics is best accomplished on the basis

of the entire visual display rather than a single measure.

  A4. For type 3 signals, perceptual ratings of roughness (and any other auditory manifestation

of aperiodicity) are likely to be the best measures for clinical assessment (Gerratt & Kreiman, 1995;

Rabinov, 1995).  Various system dimensions (e.g., fractal dimension,  attractor dimension or Lyapunov

exponent) may in time prove to be a viable acoustic compliment to perceptual ratings.  Phase por-

traits are useful visual confirmation of high dimensionality (Herzel et al., 1994).

B. Extraction of Cyclic Parameter Contours and Perturbation Measures

  B1. Since the definition of fundamental frequency F
o
 is unambiguous only for type 1 signals,

any per-cycle measurement of F
o
 and its statistical variation (perturbation) for type 2 or type 3 sig-

nals cannot be reliably extracted.

  B2. Since the definition of a per-cycle amplitude is based on the definition and extraction of

a fundamental period (1/F
o
), any measurement of per-cycle amplitude and its statistical variation

(perturbation) for type 2 or type 3 signals cannot be reliably extracted.  For type 1 signals, the per-

cycle amplitude (peak value, peak-to-peak value, RMS, etc.) needs to be clearly defined because

perturbation values are dependent on these definitions.

SUMMARY OF RECOMMENDATIONS
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  B3.  A short-term average cyclic parameter contour (e.g., average F
o
 contour, average ampli-

tude contour) is determined on the basis of a minimum cost path through a sequence of candidate

cyclic parameters.  The candidate cyclic parameters are derived from local “minimum distance”

measures between segments of the waveform separated in time.  Dynamic programming algorithms

(Talkin, 1995), correlation algorithms (Milenkovic, 1987), and cepstral algorithms (Hess, 1983; 1995)

are examples of this technique.  For correlation F
o
 tracking, (1) center-clipping is not needed, (2), the

cross-correlation is preferred to the autocorrelation, and (3) the confusions in F
o
 resulting from

subharmonics is best resolved with global analysis, such as dynamic programming (Milenkovic,

1995).  Average cyclic parameter contours can be extracted from both type 1 and type 2 signals, but

when bifurcations in type 2 signals occur (sudden qualitative changes in the waveform), it is likely

that some arbitrary decisions by the extraction algorithm will affect the contour in a non-unique way.

  B4.  An event-based cyclic parameter contour (e.g., F
o
 contour, amplitude contour, open

quotient contour) is obtained on a per-cycle basis by marking cyclic events (peaks, zero crossings,

etc.) or by making “minimum distance” measures between segments of the waveform separated by

one cycle.  It is often helpful to obtain a short-term average cyclic parameter contour first (see B3)

to place candidate event markers.  The event-based cyclic parameter contours are highly susceptible

to error in type 2 or type 3 signals because the extraction algorithms are often dependent on specific

waveform patterns.  The contours can be used for visual display, but are not recommended for pertur-

bation measures on type 3 signals.  In type 1 signals, the “minimum distance” measure (also called

“waveform matching”; Titze & Liang, 1993) is the most accurate extraction method and is recom-

mended for high precision perturbation analysis.

  B5. In any voice perturbation analysis, the perturbation function should be made clear.  The

de facto standard has been the first-order perturbation function, but when long-term trends are appar-

ent in the cyclic parameter contour, the second-order perturbation function is recommended for

elimination of these trends.

  B6. In any voice perturbation analysis, the perturbation measure should be made clear.  The

de facto standard is the mean absolute (rectified) measure.

  B7. Before applying a statistical measure to a perturbation function, it is important to study

the distribution (e.g., the histogram of the cyclic parameter contour) to determine the appropriate-

ness of the measure (Pinto & Titze, 1990; Lemke & Samawi, 1995).

  B8. The use of logarithms in amplitude perturbation measures is not recommended because

ratios of adjacent amplitude are small.

  B9. All perturbation measures should be expressed in percent by normalizing the mean value

of the cyclic parameter.  Exceptions are when the mean value is zero or the parameter is time-varying

(as in a glide or running speech).

  B10. The length of an analysis window should be on the order of 100 cycles to obtain a stable

perturbation measure (Scherer et al., in press).
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C.  Test Utterances for Voice Analysis

Test utterances for acoustic voice analysis can be classified as (a) sustained vowels and

sustained voiced consonants, (b) vowels and voiced consonants with prescribed patterns of a cyclic

parameter (e.g., glides, scales, etc.), or (c) speech utterances.

  C1. Sustained vowels should continue to be used for voice perturbation analysis because they

elicit a stationary process in vocal fold vibration.

  C2. If utterances with prescribed patterns (e.g., Fo glides, intensity glides, etc.) are used, the

patterns should be removed in the analysis and not included as part of the perturbation measure.

  C3. Whenever possible, a high vowel ([i] or [V] and a low vowel ([b] or [<] should be used to

report voice perturbation because source-vocal tract interactions are vowel dependent and can there-

fore influence laryngeal behavior.

  C4. Multiple tokens of a sustained vowel (on the order of 10) are necessary to obtain reliable

perturbation measures (Scherer et al, in press).  Generally, the number of tokens required increases

with the size of the perturbation measure.

  C5. Since voice perturbations vary with Fo, intensity, and voice quality, these quantities should

be defined whenever inter and intra-subject differences are reported.

D.  Acquisition of Acoustic Voice Signals

  D1. For type 1 signals for which a perturbation measure of the order of 0.1% is to be extracted

to 10% accuracy, the following recommendations are made:

a. A professional-grade condenser microphone (omnidirectional or cardioid) with a mini-

mum sensitivity of -60 dB should be used (Titze & Winholtz, 1993).

b. For steady vowel utterances, the mouth-to-microphone distance can be held constant and

less than 10 cm (preferably 3-4 cm) in order to avoid an artificial wow and to maintain a high signal-

to-noise ratio; a miniature head-mounted microphone is recommended (Winholtz & Titze, in press).

This recommendation does not necessarily apply to general speech analysis, where breath noises can

contaminate the signal at close distances.

c. Close microphone distances require off-axis positioning (45o to 90o from the mouth axis)

in order to reduce aerodynamic noise from the mouth in speech.

d. The amount of room reverberation, room noise, and proximity to reflecting surfaces

inside the recording booth need to be controlled. Exact recommendations are forthcoming.

e. A 16-bit A/D converter or DAT recorder is recommended, but this must be accompanied

by conditioning electronics (amplifiers, filters) that have signal-to-noise ratios in the 85-95 dB range

(Doherty and Shipp, 1988).

f. Sampling frequencies of 20-100 kHz should be used, depending on the degree of interpo-

lation between samples that the analysis software provides (Titze, Horii & Scherer, 1987; Milenkovic,

1987; Deem et al., 1989).
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  D2. Manufacturers of workstations for acoustic voice analysis should be encouraged to pro-

vide DC coupling and low-frequency fidelity in acquisition hardware to accommodate physiologic

signals (e.g., an electroglottograph, a flow mask) that augment the microphone signal. For all input

signals, real-time feedback for clipping should be provided to avoid overloading the A/D converters.

For DC coupling, there should be minimal drift and the drift should be reported and calibratable.

  D3. Line-level inputs (on the order of a few hundred millivolts) should be provided as a direct

interface to the outputs of transducers, so that expensive high fidelity analog preamplifiers can be

bypassed.

  D4. A digital audio tape (DAT) recorder should be used to store signals, unless A/D conver-

sion is directly to the computer (Doherty & Shipp, 1988).

  D5. Recordings should be made in a sound-treated room (ambient noise < 50 dB); given that

120 Hz is very close to the average normal male speaking F
o
, special care should be given to the

removal of noise sources in the room that create 60 Hz hum and its associated harmonics. In general,

one should specify the spectral weighting of the allowable noise in a sound-treated room. This is

particularly important if inverse filtering from the microphone signal is attempted.

E. File Formats

A number of file formats exist for speech and voice data (e.g. SPHERE, ILS, RIFF, Kay's

NSP, CSRE40, CSpeech and NCVS92).  These formats have been developed over many years and

have a  number of adherents.

  E1. SPeech HEader REsources (SPHERE), developed by the National Institute of Standards

and Technology (NIST), has the potential for high usage within the general scientific community,

and is recommended.  It is currently being used for the dissemination of the Texas Instruments-MIT-

NIST (TIMIT) speech database.  It contains a 1024 byte ASCII header followed by the data (which

may be compressed).  The header consists of a fixed format portion identifying the header type, and

the length of the header.  Following this is the object-oriented free format portion of the header,

which describes such characteristics as sampling rate, channel count, and coding method.  Software

utilities have been provided by NIST for reading, writing and compressing data files.  Information

and software are available through Jon Fiscus, National Institute of Standards and Technology, Bldg.

225, Room A-216, Gaithersburg, Maryland  20899.

  E2. If the data are to be used outside the general scientific community, or consists of multiple

sources (e.g. video and audio), or requires compatibility with common PC based sound cards, the

Microsoft RIFF format (which defines WAV files) is recommended. The RIFF format is very similar

to Kay Elemetric's NSP format, which has been used widely in clinically-based voice laboratories.

Kay provides utilities for conversion between RIFF and NSP.
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  E3. If neither of these formats are suitable, it is recommended that the format chosen conform

to a structure in which the header and data are isolated, so that others may strip the header to gain

access to the data.  NCVS92, ILS, RIFF, and SPHERE are some of the formats that adhere to this

principle.

F. Data Base Sharing

  F1. For speech materials, there are a number of data bases available which have particular

phonetic characteristics e.g., the TIMIT data base described in E1 is phonetically balanced, and uses

Shibboleth sentences.  Other data bases available are the Wall Street Journal (WSJ), the Resource

Management (RM), and Air Transportation Information Systems (ATIS).  These are just a few of the

many available.  They can all be obtained from the Linguistic Data Consortium, 441 Williams Hall,

University of Pennsylvania, Philadelphia, PA  19104, email: LDC@unagi.cis.upenn.edu, world wide

web: ftp.\\www.cis.upenn.edu.

  F2. Kay Elemetrics is offering a CD-ROM entitled Disordered Voice Database of the Massa-

chusetts Eye and Ear Infirmary Voice and Speech Lab. This database has entries from over 700

subjects and includes both video and audio records. For more information, contact Kay Elemetrics,

2 Bridgewater Lane, Lincoln Park, NJ 07035-1488.

F3. For steady vowels and voiced consonants, vowels and consonants with dynamic character-

istics such as glides, and sentences eliciting highly expressive voice production, the NCVS is cur-

rently producing its own data base.  Information about this data base may be obtained from Wilbur

James Gould Voice Research Center, The Denver Center for the Performing Arts, 1245 Champa

Street, Denver, CO  80204.

G. Data Base Management

Data base management (attribution, classification, annotation, etc.) was not discussed in the

workshop, but should be addressed in the future as a growing concern. As more databases are being

created and mixed in large storage and retrieval systems, automated database indexing will become

a necessity.
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GLOSSARY OF TERMS

Abduction:  Movement of the vocal folds in the process of separation.
Abduction Quotient:  The ratio of the glottal half-width at the vocal processes to the amplitude of vibration of

the vocal fold.
Adduction:  Movement of the vocal folds in the process of approximation.
Amplitude:  In a sinusoid, the magnitude of the maximum positive or negative excursion from the zero

axis; in a complex periodic signal, the positive or negative peak, peak-to-peak, or root-mean-squared
(RMS) value in a given cycle; in a voice signal, instantaneous amplitude is measured between two
cyclic (recurring) events, whereas average amplitude is estimated over a series of cycles on a least
error criterion.

Amplitude-to-length Ratio:  The ratio of the mid-membranous amplitude of vibration to the length of the
membranous vocal fold.

Aperiodicity:  The absence of periodicity, or superposition of periodic oscillations with frequencies of non-
integer ratios.  Generally, any deviation from periodicity.

Aphonia:  Absence of phonation; the inability to set the vocal folds into vibration, either constantly or intermit-
tently; whisper is often the replacement for intended phonation.

Aspiration:  The sound made by turbulent airflow preceding or following vocal fold vibration, as in [ha]
or [ah].

Asthenic (Lax) Voice:   A voice that appears too low in effort, weak; hypofunction of laryngeal muscles is
apparent.

Attractor:  A trajectory (or more strictly, an invariant set) in phase space to which a system asymptotes when
stationarity is achieved.

Bifurcation:   A qualitative change in the behavior of a nonlinear dynamical system when a parameter of the
system is varied.

Biphonia:   Phonation with two independent pitches; acoustically, there are two non-commensurate fundamen-
tal frequencies, which can appear as nonparallel harmonic lines in a spectrogram as either or both pitches
change.  [Theoretically, the lines may be parallel but not rationally dependent].  This definition can be
extended to triphonia or multiphonia.

Bleat:  See flutter.
Breathy Voice:  Containing the sound of breathing (expiration) during phonation; acoustically, breathy voice,

like falsetto, has most of its energy in the fundamental, but a significant component of noise is present
due to turbulence in the glottis.  In hyperfunctional breathiness, air leakage may occur in various places
along the glottis, whereas in normal voice, air leakage is usually at the vocal processes.

Chaos:  A qualitative description of the behavior of a dynamical system that is deterministic (nonrandom) but
aperiodic.

Chest Register:  A register that appears to be related to a strong phase delay between the upper and lower
margins of the vocal folds; in singing, a tracheal resonance seems to enhance this register; chest register
is often used interchangeably with modal register.

Convergent Glottis:  The glottis narrows from bottom to top.
Covered Voice:  A darkened quality obtained by rounding and protruding the lips or by lowering the larynx; the

term is likely to stem from covering (fully or partially) the mouth of a brass instrument to obtain a
muffled sound; acoustically, all formants are usually lowered and a stronger fundamental is obtained.

Creaky Voice:  A voice that sounds like a creaking door, like two hard surfaces rubbing against each other;
acoustically, a complex pattern of subharmonics and modulations is observed that reflect a complexity
of modes of vibration of the vocal folds.
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Crossover Frequency:  The fundamental frequency for which there is an equal probability for perception of
two adjacent registers.

Cyclic Parameter:  Any quantity that is defined within a cycle (e.g. amplitude, period, open quotient, skewing
quotient in the context of any periodic repetition of the event).

Dichrotic:  See biphonation.
Diplophonia:  Phonation in which the pitch is supplemented with another pitch that corresponds to a frequency

an octave higher; some roughness is usually perceived; dynamically, there is a period doubling (an
F

o
/2 subharmonic).

Divergent Glottis:  The glottis widens from bottom to top.
Dysphonic:  Abnormal in phonation.
Falsetto Register:   A register in which the voice is perceived to be continuous (non-pulsed) and weak in timbre;

acoustically, the fundamental carries the greatest amount of energy; physiologically, only partial con-
tact is made between the vocal folds, especially vertically.

Fluctuation:  A back and forth irregular movement, usually indicating instability in a system.
Flutter:   Phonation with amplitude or frequency modulations (or both) in the 8-12 Hz range; physiologically;

also called bleat, as the bleating of a lamb.
Forced Oscillation:  Oscillation imposed on a system by an external periodic source.
Free Oscillation:  An oscillation without any imposed driving forces.
Frequency:  The number of events per second; in a sinusoid, the number of cycles (2π radians) per second.
Fundamental Period:  In a periodic signal, the smallest value T

o
 that satisfies the relation f(t+T

o
)=f(t) for all

time t; in a voice signal, instantaneous T
o
 is the time between two cyclic (recurring) events, whereas

average T
o
 is the smallest constant inter-event duration that best matches a series of prominent recurring

events.
Fundamental Pitch:  In a voiced sound, the lowest perceived pitch associated with vocal fold vibration.
Fundamental Frequency:  The inverse of fundamental period.
Glottalized Voice:  A voice that contains frequent transient sounds (clicks) that result from relatively forceful

adduction or abduction during phonation.
Glottis:  The airspace between the vocal folds.
Harmonic Frequencies:  Frequencies that are related to the fundamental frequency by an integer ratio.
Histogram:  A display of the number of times a variable takes on a certain value, or a small range of values, in

its total range; also known as the distribution density of the variable.
Hoarse Voice:  The combination of rough voice and breathy voice.
Honky (Nasal) Voice:  A voice quality associated with the excessive acoustic energy coupling to the nasal tract;

acoustically, nasality is characterized by a low-frequency murmur and spectral zeros.
Jitter:  A short-term (cycle-to-cycle) variation in the fundamental frequency of a signal.
Lift:   A transition point along a pitch scale where vocal production becomes easier (lifted).  The term is used to

describe register transitions.
Loft:   A suggested term for the highest (loftiest) register;  usually referred to as falsetto voice.
Loudness:  The psychoacoustic perceptual measure of a sound on a strong-weak continuum; the primary

acoustic correlate is sound pressure level.
Mean:  The value obtained by adding up N numbers and dividing by N.
Mean Rectified:  The value obtained by first rectifying (taking the absolute value of) a set of numbers and then

taking the mean.
Median:  The value obtained by working a histogram of a set of numbers and letting the number of entries

above and below the value be equal.
Median Rectified:  The value obtained by first rectifying (taking the absolute value of) a set of numbers and

then finding the median.
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Modal Register: A register that appears to be related to a strong phase delay between the upper and lower
margins of the vocal folds; auditorily, contact is made between the vocal folds during the closed phase,
both vertically and horizontally; the voice is perceived to be continuous (non-pulsed) and relatively rich
in timbre; acoustically, the spectral slope of the glottal source (volume velocity) waveform is on the
order of 12-15 dB/octave.

Mode (of Vibration):  A characteristic spatial pattern of vibration that can (in principle) exist in isolation, but
ordinarily forms a building block (together with other modes) for complicated vibrating patterns.

Modulation:  The systematic variation of a cyclic parameter (e.g. amplitude or fundamental frequency) over
several cycles of phonation.

Nasal Voice: Associated with excessive opening of the velar port in vowel production; see honky voice and
twangy voice.

Natural Oscillation:  Oscillation without imposed driving forces; usually observed after an impulse of energy
is given to a system.

Oscillation:  A repeated back and forth movement, particularly when self-sustained (see self-sustained oscilla-
tion).

Passaggio:  Passages on a pitch scale where the voice tends to change register involuntarily.
Period Doubling:  A bifurcation in which two adjacent cycles become unequal, but together form a new period

of twice the original length.
Periodicity:  The property of a time series such that f(t+nT)=f(t), where T is the period and n is any positive

integer.
Perturbation:  A disturbance, or small change, in a cyclic variable (period, amplitude, open quotient, etc.) that

is constant in regular periodic oscillation.
Perturbation Function:  A time series of differences between selected cyclic parameters that are delayed or

advanced in time (e.g., the first-order difference function of the F
o
 contour).

Perturbation Measure:  An average value of the perturbation function over an analysis window of several
cycles.

Phase Space:  A space defined by two or more independent dynamical variables (in particular, position and
velocity) to plot the trajectory of a dynamically varying object.

Phonation:  The process of creating sound by vocal fold vibration.
Pitch:  The psychoacoustic perceptual measure of a sound on a high-low continuum; the primary acoustic

correlate is fundamental frequency.
Pressed Voice:  Phonation in which the vocal processes of the arytenoid cartilages are pressed together, result

ing in a constricted glottis with relatively low airflow; there is also medial compression of the vocal fold
tissue; acoustically, the fundamental is weakened relative to the overtones.

Pulsed Phonation:  Phonation in which temporal gaps are perceived; acoustically, energy “packets” are per
ceived below about 70 Hz, where formant energy effectively dies out prior to re-excitation with a new
glottal pulse; pulsed phonation or pulse register is also called vocal fry, apparently because of its similar
ity with popping sounds that are emitted from a hot frying pan.

Rectification:  The process of taking the absolute value of a function or time series (i.e., making all negative
values positive).

Register:  A major category of voice quality (e.g., modal, falsetto, pulse, chest, head, whistle).
Resonant Voice:  A voice quality that rings on, “carries” well; acoustically, ample formant energy is excited.
Ringing (Resonant) Voice:  A brightened quality, apparently obtained by enhanced epilaryngeal resonance,

which produces a strong spectral peak around 2500-3500 Hz.  In effect, there is a clustering of the
formants F

3
, F

4
 and F

5
; the combined resonances are often called the “singer’s formant”.

Root-mean-squared:  The operation that involves first squaring each of a set of numbers, then finding the mean
value of the squared numbers, and finally taking the square root of the mean value.
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Rough Voice:  An uneven, bumpy quality that appears to be unsteady in the short-term, but stationary in the
long-term; acoustically, the waveform is often aperiodic, with the modes of vibration lacking synchrony,
but voices with subharmonics can also be perceived as rough.

Self-Sustained Oscillation:  An oscillation that continues indefinitely without a periodic driving force; since
the net energy loss per cycle must be zero, self-sustained oscillation requires an energy source.

Shimmer:  A short-term (cycle-to-cycle) variation in the amplitude of a signal.
Spectral Slope:  A measure of how rapidly energy decreases with increasing frequency, or, for periodic wave

forms, with increasing harmonic number.  Also known as spectral tilt or spectral roll-off.
Stationarity:  The property of a signal that suggests no long-term drifts; the autocorrelation function

<x(t) * x(t+δ)> depends only on δ, not on t, and decays to zero with increasing t; the spectrogram
remains constant over time.

Strained (Tense) Voice:  A voice that appears effortful; visually, hyperfunction of the neck muscles is apparent;
the entire larynx seems compressed.

Strohbass:   Literal translation from German, “straw bass”, because of its perceptual similarity to crackling
straw; it is effectively the pulse register when used in singing.

Subharmonic Frequencies:  Frequencies that lie between or below the harmonic frequencies and are rational
divisions of the fundamental frequency (e.g. 1/2, 1/3) or their integer multiples.

Temporal Gap Transition:  The transition from a continuous sound to a series of pulses in the perception of
vocal registers.

Tremor:  A 1-15 Hz modulation of a cyclic parameter (e.g. amplitude or fundamental frequency), either of a
neurologic origin or an interaction between neurological and biomechanical properties of the vocal
folds.  See flutter, vibrato, and wow.

Trill:   A rapid alternation of a primary note with a secondary note (usually a semitone or a tone higher); used as
an ornament in music.

Trillo:   A rapid repetition of the same note in the 8-12 Hz range; used as an ornament in music.
Twangy Voice:   A sharp, bright quality, as produced by a plucked string.  Twang is often attributed to nasality,

but it is probably more laryngeally-based.  It is often part of a dialect or singing style.
Variability:   Literally, the ability of something to vary, by design or by accident.  More formally, the amount of

variation as determined by a statistical measure.
Ventricular Phonation:  Phonation with the false vocal folds; unless intentional, it is generally considered an

abnormal muscle pattern dysphonia associated with hyperactivity in the false fold region.
Vibrato:  A natural ingredient of a singing voice, especially in classical Western singing; acoustically, a 4-7 Hz

sinusoidal modulation of F
o
 and/or intensity; the modulation extent is typically +3% in frequency, but

varies considerably in amplitude.  Physiologically, the origin of natural vibrato lies in laryngeal muscle
contraction rather than lung pressure modulations.

Whisper:    Speech produced by turbulent glottal airflow in the absence of vocal fold vibration.
Whistle Register:  A register in which the sound is perceived as a whistle, usually high in pitch and flute-like in

quality; physiologically, the claim is that a posterior glottal gap can serve as an orifice for vortex shed
ding and an epilaryngeal resonator can reinforce the sound, but the resonance mechanism is yet specu-
lative.

Wobble:  See wow.
Wow (Wobble):  Phonation with amplitude and/or frequency modulations in the 1-3 Hz range.
Yawny Voice:  A quality associated with a lowered larynx and widened pharynx, as in a yawn.
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