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FOREWORD

To understand speech and voice production and perception, scientists have
traditionally studied the acoustic signal captured by a microphone. In the health sciences, the
human voice has been studied as a way of revealing information about the health of an
individual. While there has been considerable progress in the analysis of speech and voice
signals for the diagnosis and documentation of vocal disorders, some concern has been
expressed regarding the need to reach a consensus on the utility, feasibility, and
standardization of voice perturbation analysis methods.

The workshop proceedings are intended to be a step toward this process. A Workshop
on Acoustic Voice Analysis was held on the 17th and 18th of February, 1994, in Denver,
Colorado. The site was the Wilbur James Gould Voice Research Center (then known as The
Recording and Research Center), a division of The Denver Center for the Performing Arts
(DCPA). Sponsorship and financial support was provided by the National Center for Voice
and Speech (NCVS), and the DCPA. The NCVS is a research and training center funded by the
National Institute on Deafness and Other Communication Disorders.

The Proceedings consist of written versions of topics discussed during the workshop.
Some of the papers may be found in other journals. As a rule, previously published material
was accepted, since the workshop was seen as a summary as much as a venue for new ideas.

Attendance and contributions were by invitation, so that a broad spectrum of the voice
analysis community could be represented. While the audience and list of papers does not
exhaustively represent the community, we were able to present perspectives from industry
representatives, speech clinicians, speech science academicians, and medical personnel.

The topics presented include recording techniques, file formats, perturbation statistics
extraction algorithms, nomenclature and classification, and the nature of perturbation. As a
result, the papers ranged in style from technical summaries and algorithm descriptions to
perspectives and commentaries.

As part of this Foreword, mention should be made regarding the organization of the
manuscript. Each paper is identified using the first few letters of the primary author's name.
The first paper, HESS, by Dr. Wolfgang Hess is the keynote address for the Workshop. He was
given the task of introducing the concepts involved in pitch determination - generally considered
the heart of perturbation analysis. Because perturbations are viewed as deviations from the
steady state, the demarcation of fundamental periods is crucial. The next four papers
(identified as TALK, MIL1, DEL, and QI), discuss the topics of pitch (or FO) marking, pitch
perturbation, and amplitude perturbation. Following that are three papers (RAB, GER, and
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LEM), which discuss the utility of perturbation measures and the-statistical methodology for
defining the 'normal limits' of speech characteristics.

The paper EPN discusses a method of pitch marking, jitter measurement, and their

results as applied to aged voices. In JIA and HUA, protocols and observations are made
regarding the capturing of voice samples in the context of reducing subject frequency and
intensity variability. In KHE, a discussion and demonstration of new methods in spectral
estimation are presented, while WON presents a qualitative discussion on the sources of
perturbation frem a biomechanical perspective. The latter paper was not presented during the
workshop, but it has been submitted by the editor as a relevant topic. The short summary in
MILD makes suggestions on hardware selection in the context of different types of voice
processing. MIL2 and CUR discuss file formats, while WINH discusses microphone selection
and placement as it affects perturbation measurements.

Finally, Dr. Ingo Titze has written a summary statement (TITZE), the first part of which
may be considered as his personal perspective on the analysis, nomenclature and classification
of voice data. The second part of the statement is a set of recommendations and a glossary of
terminology. Only the recommendations should be viewed as majority opinion. The summary
statement can be obtained as a separate document from the NCVS.

The proceedings have focused on a very narrow set of issues which are important to the
voice analysis community. We hope that the results are informative, and that our efforts will at
least generate discussion, if not a consensus, in the community.

Darrell Wong,
June, 1995.
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Pitch Determination of Speech Signals — with Special
Emphasis on Time-Domain Methods

Wolfgang J. Hess

Institute for Communications Research and Phonetics (IKP), University of Bonn
Poppelsdorfer Allee 47, D—53115 Bonn, Germany
wgh@uni—bonn.de

Abstract. This paper presents a survey of methods for pitch determination of speech signals
with special emphasis on time-domain methods. As speech is a time-variant signal the re-
sult of the measurement will depend on the method applied. This implies that we first de-
fine what is subsumed under the term pitch. From the point of view of speech production
this is rate of vocal fold vibration or the duration of individual laryngeal excursion cycles which
is measured in the time domain by algorithms that are able to track the signal period by
period. From a more signal-oriented point of view where the emphasis is laid on periodicity
of voiced speech signals, this will be fundamental period (duration), or, if the measurement
is carried out in the frequency domain, fundamental frequency. Pitch determination algo-
rithms (PDAs) which follow this definition usually operate on the basis of some short-time,
i.e., frame-to-frame representation. After a short review of these PDAs a survey of time-
domain algorithms is presented. These include methods such as structural analysis of the
speech signal with or without preprocessing, determination of individual periods from the
first partial of the signal, determination of the point of glottal closure, and multi-channel
approaches. Some remarks on glottal inverse filtering are added. The paper then discusses
the issue of error analysis. Errors in pitch determination are classified into gross errors and
measurement inaccuracies, and it is a main problem for any algorithm, when it detects an
estimate that seems to be wrong, to detect reliably whether this is due to a measurement
failure or to a momentary irregularity of the signal. The paper also addresses the possibility
to use an instrument that directly measures the laryngeal excitation, notably a laryngo-
graph, for gaining reference contours from which the PDAs can be evaluated or trained.

Pitch, i.e., fundamental frequency (or rate of vocal-fold vibration) F as well as fundamental
period Ty takes on a key position in the acoustic speech signal. The prosodic information
of an utterance is predominantly determined by this parameter. The ear is by an order of
magnitude more sensitive to changes of fundamental frequency than to changes of other
speech signal parameters (Flanagan and Saslow, 1958, Klatt, 1973; Harris and Umeda,
1987). The quality of vocoder speech as well as of synthetic speech (when natural-speech
units are used) is essentially influenced by the quality and faultlessness of the pitch mea-
surement (Gold, 1977). Hence the importance of this parameter claims for good and reli-
able measurement methods.

Besides voicing determination, pitch determination is one of the two subproblems of
voice source analysis. In voiced speech, the vocal cords vibrate in a quasi-periodic way.
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Speech segments with voiceless excitation are generated by turbulent air flow at a constric-
tion or by the release of a closure in the vocal tract. The parameters we have to determine
in voice source analysis are the manner of excitation, i.e., the presence of a voiced excitation
and the presence of a voiceless excitation, a problem which is referred to as voicing deter-
mination, and — for the segments of the speech signal where a voiced excitation is present
— pitch determination.

Automatic pitch determination has a rather long history which goes back even beyond
the times of vocoding (e.g. Griitzmacher and Lottermoser, 1937). The most important de-
velopments leading to today’s state of the art were made in the sixties-and-seventies; these
methods that are reviewed in this paper are extensively discussed in (Hess, 1983). Since
then, few absolutely new principles have been invented; a number of methods, however,
were improved and refined, whereas other solutions were revived that required an amount
of computational effort appearing unrealistic at the time the algorithm was first developed.
On the other hand, new techniques such als neural networks or — even more recently —
the wavelet transform initiated new developments especially in time-domain pitch deter-
mination where further improvements are to be expected in the near future. With speech
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Fig. 1. Example of a speech signal (after pitch determination). Beginning of the utterance ”Algo-
rithms and devices for pitch determination”. Speaker: male; undistorted signal. Scale: 250 ms
per line. The analysis was done using the algorithm by Hess (1979). (- ————— ) Voiceless,
() Pause, (| ||| ]]) pitch period boundaries ("markers”). Markers indicated by short lines
were found irregular
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corpora coming into use that contain many labeled and processed speech data, researchers
nowadays tend toward thoroughly examining and checking the performance of their algo-
rithms.

At the first glance the task looks simple: one has just to detect the fundamental frequen-
cy of a quasi-periodic signal. Dealing with speech signals, however, the assumption of qua-
si-periodicity is often far from reality. Figure 1 shows an arbitrary (but typical) example of
a speech signal. For a number of reasons, the task of pitch determination must be counted
among the most difficult problems in speech analysis.

1) In principle, speech is a nonstationary process; the momentary position of the vocal
tract may change abruptly at any time. This leads to drastic variations in the temporal
structure of the signal, even between subsequent pitch periods.

2) Due to the flexibility of articulatory gestures and the wide variety of voices, there exist
a multitude of possible temporal structures. Narrow—band formants at low harmonics (es-
pecially at the second or third harmonic) are a particular source of trouble.

3) For an arbitrary speech signal uttered by an unknown speaker, the fundamental fre-
quency can vary over a range of almost four octaves (50 to 800 Hz). Especially for female
voices, F thus often coincides with the first formant (the latter ranging from about 200 Hz
to 1400 Hz). This causes problems when inverse filtering techniques are applied.

4) The excitation signal itself is not always regular (see Fig. 2). Even under normal
conditions, i.e., when the voice is neither hoarse nor pathologic, the glottal waveform ex-
hibits occasional irregularities (Dolansky and Tjernlund, 1968; Fujimura, 1968; Lieber-
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man, 1963). In addition, the voice may temporarily fall into vocal fry or laryngealization
(Hollien, 1974) which is a nonpathologic mode of voice excitation with rather large and
irregular intervals between subsequent glottal pulses . Such laryngealizations are deliber-
ately used by many speakers as boundary signals or substitutions for glottal stops (Huber,
1988) and may therefore occur anywhere in fluent speech.

5) Additional problems arise in speech communication systems where the signal is often
distorted or band limited (for instance, in the telephone channel). This may be detrimental
for some applications. For voice quality measurement or vocal jitter determination, for
instance, even the inevitable phase distortions introduced by an ordinary analog tape or
cassette recorder (cf. Fig. 3) may be intolerable.

Literally hundreds of methods for pitch determination have been developed. This paper
will give a survey of the prevailing principles and discuss selected methods in more detail.
First, we will deal with possible definitions of the parameter pitch itself (Sect. 1), followed
by a gross categorization of the various principles of its determination (Sect. 2). After that
we will go into a more detailed discussion of individual principles and individual solutions.
Section 3 will present a brief survey of short-term analysis methods, and then Sect. 4 will
deal more extensively with time-domain methods. Sections 5 and 6 will finally discuss
problems of error analysis and evaluation, accurate voicing and pitch determination using
instruments such as the laryngograph, and various applications.

As to the realization, we will not distinguish between a hardware device (whether ana-
log or digital) and an algorithmic solution: they are all regarded as pitch determination algo-
rithms (PDAs). In addition we will separate the problems of pitch determination and voic-
ing determination although the two are often realized within the same algorithm; we will
assume in the following that a voiced/unvoiced decision has been done already, and that
there are only voiced signals to be processed by the respective PDA.

Fy=175Hz Fy =150 Hz Fy = 400 Hz

]
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Fig. 3a-c. Phase distortions in analog tape recordings. (a) Rectangular waveform; (b) same wa-
veform after recording on a high-quality analog tape recorder; (c) same waveform after rere-
cording it with the same recorder in backward direction
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1. Basic Definitions of Pitch

Pitch can be measured in many ways. If the signal is completely stationary and periodic, all
these strategies — provided they operate correctly — lead to identical results. Since the
speech signal is nonstationary and time variant, however, aspects of strategy such as the
starting point of the measurement, the length of the measuring interval, the way of averag-
ing (if any), or the operating domain (time, frequency, lag etc.) of an individual algorithm
start influencing the results and may lead to estimates that differ from algorithm to algo-
rithm even if all these results are ”correct” and ”accurate.” Before entering a discussion on
individual methods, we must therefore have a look at the parameter pitch and provide a
clear definition of what should be measured and what is actually measured.

A word on terminology first. There are three points of view for looking at a speech pro-
cessing problem (Zwicker et al., 1967): the production, the signal-processing, and the per-
ception point of views, respectively. In the actual case of pitch determination the produc-
tion point of view is obviously oriented toward the generation of the excitation signal in the
larynx; we will thus have to start from a time-domain representation of the waveform as a
train of laryngeal pulses. If an algorithm or device works in a speech production oriented
way, it measures individual laryngeal excitation cycles or, if some averaging is performed, it
determines the rate of vocal-fold vibration. The signal-processing point of view can be char-
acterized in such a way that (quasi-)periodicity is observed in the signal, wherever that sig-
nal comes from, and that the task is just to extract those features that best represent this
periodicity. The pertinent terms are fundamental frequency or fundamental period. If indi-
vidual cycles are determined, we may (somewhat inconsistently) speak of pitch periods or
simply of periods. The perception point of view leads to a frequency-domain representa-
tion since pitch sensation corresponds to a frequency and not to an average period or a
sequence of periods (Goldstein, 1973; Terhardt, 1979; Plomp, 1976). This point of view is
associated with the original meaning of the term pitch. However, the term pitch has consis-
tently been used as some kind of “common denominator”, i.e., as a general name for all
those terms mentioned before, at least in the technical literature (Kohler, 1982). In addi-
tion, psychoacousticians have started to create new terms for describing the aspects of
pitch perception, such as spectral pitch or virtual pitch (Terhardt, 1979), mostly because they
felt it necessary to specify partial aspects of the complex phenomenon of pitch perception
more precisely, but also in order to avoid confusions. In the following, we will therefore use
the term pitch in this wider sense wherever a more restricted description is undesirable or
impossible, and take the more precise terms otherwise.

Defining the different-representatiens of pitch,-it-appears reasonable to proceed from
production to perception. Going in that direction we will start at a local and detailed repre-
sentation and arrive at a more global representation in the case of the perception-oriented
view. The basic definitions could thus read as follows (Hess, 1983:475, 1992; Hess and In-
defrey, 1987):

Ty is defined as the elapsed time between two successive laryngeal pulses. Measure-
ment starts at a well specified point within the glottal cycle, preferably at the point of
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glottal closure or — if the glottis does not close completely — at the point where the
glottal area reaches its minimum. (1)

PDAs that obey this definition will be able to locate the point of glottal closure and to de-
limit individual laryngeal excitation cycles. This task, which usually forms part of a glottal
inverse filter, goes far beyond the scope of ordinary pitch determination; if the speech sig-
nal alone is available for the analysis, reliable results are to be expected only for selected
algorithms and only if the signal is totally undistorted. With the aid of an instrument this
problem can be solved in a more general way.

Ty is defined as the elapsed time between two successive laryngeal pulses. Measure-

ment starts at an arbitrary point within the glottal cycle. Which point that is depends

on the individual method, but for a given PDA this point is always located at the same

position within the glottal cycle. 2)
Ordinary time-domain PDAs follow this definition. The reference point can be a signifi-
cant extreme, a certain zero crossing, an excursion cycle, and so on. This is not necessarily
the point of glottal closure itself. Usually, however, it is possible to derive the point of glot-
tal closure from this reference point when the signal is undistorted. Yet the presence of
phase distortions can even destroy this possibility. PDAs that follow this definition usually
track the signal period by period in a synchronous way, and a commonly used term (al-
though somewhat inconsistent with the definition of the term pitch as given above) for what
is measured here is individual pitch periods.

Ty is defined as the elapsed time between two successive laryngeal cycles. Measure-
ment starts at an arbitrary instant which is fixed according to external conditions, and
ends when a complete cycle has elapsed. (3)

This is an incremental definition of T;. T} is still defined as the length of an individual peri-
od, but no longer from the speech production point of view, since the definition has noth-
ing to do with an individual excitation cycle. The synchronous way of processing is main-
tained, but the phase relations between the laryngeal waveform and the markers, i.e., the
pitch period delimiters at the output of the algorithm are lost. Once a reference point in
time has been established, it will be kept only as long as the measurement is correct and as
long as voicing continues. If there is a measurement error, or if voicing ceases, the location
of the reference point is lost, and the next reference point may be completely different with
respect to its position within the excitation cycle.

Ty is defined as the average length of several periods, i.e., as the average elapsed time

between a small number of successive laryngeal cycles. In which way the averaging is

performed, and how many periods are involved, is a matter of the individual algo-

rithm. (42)
This is the standard definition of T for any PDA that applies stationary short-term analy-
sis, including the implementations of frequency-domain PDAs. Well-known methods, such
as cepstrum (Noll, 1967) or autocorrelation (Rabiner, 1977) follow this definition. The
corresponding frequency-domain definition reads as follows.

Folis defined as the fundamental frequency of an (approximately) harmonic pattern in

the (short-term) spectral representation of the signal. It depends on the particular
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method whether Fis calculated as the frequency of a certain harmonic divided by the

respective harmonic number m (including m=1), as the frequency difference between

adjacent spectral peaks, or as the greatest common divisor of the frequencies of the
individual harmonics. (4b)

The perception point of view of the problem leads to a different definition of pitch.
Pitch perception happens in the frequency domain. According to the existing theories
(Plomp, 1976), _

Fyis defined as the frequency of the sinusoid that evokes the same perceived pitch (res-

idue pitch, virtual pitch, etc.) as the complex sound which represents the input speech

signal. ©))
This definition is principally different from the previous ones. Above all, it is a long-term
definition (Terhardt et al., 1982). The pitch perception theories were developed for sta-
tionary complex sounds and were only extended toward short pulse trains with varying am-
plitude patterns and constant frequencies, but not toward signals with varying fundamental
frequency. Except for some investigations which indicate that the difference limen for Fy
changes goes up by at least an order of magnitude when time-variant stimuli are involved
(Harris and Umeda, 1987; ’t Hart, 1981), the question of the behavior of the human ear
with respect to short-term pitch perception is only partially answered, and our knowledge
about what kind of short-term “analysis” is executed in the human ear and how it is
executed is still incomplete. Hence even such PDAs that claim to be perception-oriented
(e.g., Duifhuis et al., 1982, Hermes, 1988) enter the frequency domain in a similar way as
in definition (4b), i.e., by a standard short-term transformation such as the discrete Fourier
transform (DFT) with previous windowing of the signal.

Since the results of individual algorithms may be different according to the definition
they follow, and since the definitions (1) through (5) are partly given in the time (or lag)
domain, partly in the frequency domain, it is necessary to reestablish the relation between
the time- and frequency-domain representations of pitch,

Fo=1/T,, (6)
in such a way that when a measurement is carried out in one of the domains, however T

or Fy are defined there, the representation in the other domain will always be established
by this equation.

2. Categorizing the Various Principles

We subdivide a PDA into three steps of processing: a) the preprocessor, b) the basic extrac-
tor, and c) the postprocessor (McKinney, 1965; Hess, 1983:152). The basic extractor per-
forms the main task: it converts the input signal into a series of pitch estimates. The task
of the preprocessor is data reduction and enhancement in order to facilitate the operation
of the basic extractor. The postprocessor operates in a more application-oriented way.
Some of its typical tasks are error correction, smoothing the pitch contour, or graphic dis-
play.

The existing PDA principles can be split up into two gross categories when the input
signal of the basic extractor is taken as a criterion. If this signal has the same time base as
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the original speech signal, the PDA operates in the time domain. It will thus measure 7|
according to one of the definitions (1) through (3). In all other cases, somewhere in the
preprocessor the time domain is left. Since the speech signal is time variant, this cannot be
done other than by a short-term transformation; in this case we will usually determine Ty
or Fp according to definitions (4a,b) or (5); in some rare cases (for instance, AMDF) defi-
nition (3) may apply as well. Accordingly, we have the two PDA categories: a) time-domain
PDAs, and b) short-term analysis PDA:s.

3. A Brief Look at Short-Term Analysis PDAs

3.1 Principle of Short-Term Analysis and a Categorization of PDAs

In any short-term analysis PDA a short-term (or short-time) transformation is performed in
the preprocessor step. The speech signal is split up into a series of frames; an individual
frame is obtained by taking a limited number of consecutive samples of the signal x(n) from
the starting point, n=g—K+1, to the ending point, n=q. The frame length, K, is chosen
short enough so that the parameter(s) to be measured can be assumed approximately
constant within the frame. On the other hand, K must be large enough to guarantee that
the parameter remains measurable. For most short-term analysis PDAs a frame thus re-
quires two or three complete periods at least. In extreme cases, when F changes abruptly,
or when the signal is irregular, the contradiction of these two conditions can be a source of
error (Fujisaki et al., 1986). The frame interval Q, i.e., the distance between consecutive
frames (or its reciprocal, the frame rate), is determined in such a way that any significant
parameter change is documented in the measurements.

The short-term transformation, so to speak, is intended to behave like a concave mirror
which focuses all the scattered information on pitch, as far as it is available within the
frame, into one single peak in the spectral domain. This peak is then determined by a peak
detector (as the usual implementation of the basic extractor in this type of PDAs). Hence
the output signal of the basic extractor is a sequence of average pitch estimates. The short-
term transform causes the phase relations between the spectral domain and the original
signal to be lost. At the same time, however, the algorithm loses much of its sensitivity to
phase distortions and signal degradation. Unfortunately the increased reliability of the al-
gorithm is accompanied by an increased computing effort (which is at least one order of
magnitude higher than for a time-domain PDA). Much of this effort goes into the numeric
calculation of the transform. Besides the search for reliability, the search for a fast imple-
mentation has therefore been an important issue in the design of short-term analysis
PDA:s.

Not all the known spectral transforms show the desired focusing effect. Those ones
which do are in some way related to the power spectrum: correlation techniques, frequen-
cy-domain techniques, and a least-squares approach (Fig. 4). Among the correlation tech-
niques we find the well known autocorrelation function which became successful in pitch
determination of band-limited signals when it was combined with time-domain center clip-
ping (Sondhi, 1968; Rabiner, 1977). Its counterpart is given by applying a distance func-
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Short-Term Analysis Pitch Determination
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Fig. 4. Methods of short-term analysis (short-time analysis) pitch determination. [Time and lag
scales are identical; the frequency scale in the box Harmonic Analysis was magnified.]

tion, for instance the average magnitude difference function AMDF (Sobolev and Baro-

nin, 1968; Ross et al., 1974):
AMDF(@d) = > |x(n) —x(n+d)| .
n

()

If the signal were strictly periodic, the distance function would take on a value of zero at
d=Ty . For the quasi-periodic speech signal there will be a strong minimum in the AMDF
at this value of the lag (delay time) d. In contrast to all other short-term PDAs where the
estimate of T or Fy is indicated by a maximum whose position and value have to be deter-
mined, the minimum has an ideal target value of 0 so that we only need to determine its
position. For this reason, distance functions do not require (quasi-)stationarity within the
measuring interval; they can cope with very short frames of one pitch period or even less.
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This principle thus represents the only short-term analysis PDA which is able to follow def-
inition (3) (Moser and Kittel, 1977). The AMDF has also been successfully applied to the
linear-prediction residual (Un and Yang, 1977).

The frequency-domain methods are also split up into two groups. Direct determination
of Fy as the location of the lowest peak in the power spectrum is unreliable and inaccurate.
It is thus preferred to investigate the harmonic structure of the signal. One way to do this
is spectral compression, which computes the fundamental frequency as the greatest com-
mon divider of all harmonics. The power spectrum is compressed along the frequency axis
by a factor of two, three etc. and then added to the original power spectrum. This operation
gives a peak at F resulting from the coherent additive contribution of the higher harmon-
ics (Schroeder, 1968; Noll, 1970; Martin, 1981, 1987). Some of these PDAs stem from theo-
ries and functional models of pitch perception in the human ear (Terhardt, 1979; Terhardt
et al., 1982; Duifhuis et al., 1982; Hermes, 1988). — The second frequency domain tech-
nique leads back into the time domain. Instead of transforming the power spectrum itself
(which would lead to the autocorrelation function), however, the inverse transform is per-
formed on the logarithmic power spectrum. This results in the well known cepstrum (Noll,
1967), which shows a distinct peak at the ”quefrency” (lag) d=T).

Finally we have to mention the least-squares (”maximum likelihood”) approach. This is
originally a mathematical procedure to separate a periodic signal of unknown period T
(Noll, 1970) from Gaussian noise within a finite signal. Since neither the speech signal is
periodic nor the background noise (plus the aperiodic components of the speech signal it-
self) can be expected as Gaussian, the approach has to be slightly modified in order to work
in a PDA (Wise et al., 1976; Friedman, 1977).

In summary, short-term analysis PDAs provide a sequence of average pitch estimates
rather than a measurement of individual periods. They are not very sensitive to phase dis-
tortions or to absence of the first partial.

3.2 Example: Double-Transform PDA with Nonlinear Distortion in the Frequency Domain

The sensitivity against strong first formants, especially when they coincide with the second
or third harmonic, is one of the big problems in pitch determination. This problem is suit-
able met by some procedure of spectral flattening.

Spectral flattening can be achieved in several ways. One of them is time-domain nonlin-
ear distortion, such as center clipping (Sondhi, 1968; Rabiner, 1977). A second way is lin-
ear spectral distortion by inverse filtering (Markel, 1972; Un and Yang, 1977). A third way
is frequency-domain amplitude compression by nonlinear distortion of the spectrum. This
algorithm operates as follows: 1) short-term analysis and transform into the frequency do-
main via a suitable discrete Fourier transform, 2) nonlinear distortion in the frequency do-
main, and 3) inverse Fourier transform. The resulting domain is again equivalent to the
time domain; to avoid confusion, we will henceforth call it the lag domain.

Two members of this group were already mentioned: the autocorrelation PDA (Rabin-
er, 1977) and the cepstrum PDA (Noll, 1967) which are more closely related than one
might conclude from the presentation in Fig. 4. It is well known that the autocorrelation
function can be computed as the inverse Fourier transform of the power spectrum. Here,
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the distortion consists in taking the squared magnitude of the complex spectrum. The cep-
strum, on the other hand, uses the logarithm of the spectrum. The two methods therefore
differ only in the characteristics of the respective nonlinear distortions applied in the spec-
tral domain. The cepstrum PDA is known to be rather insensitive to strong formants at
higher harmonics but to develop a certain sensitivity with respect to additive noise. The
autocorrelation PDA, on the other hand, is insensitive to noise but rather sensitive to
strong formants. Regarding the slope of the distortion characteristic, we observe the dy-
namic range of the spectrum being expanded by squaring the spectrum for the autocorrela-
tion PDA, whereas the spectrum is substantially flattened by taking-the-togarithm. The two
requirements — robustness against strong formants and robustness against additive (white)
noise — are in some way contradictory. Expanding the dynamic range of the spectrum em-
phasizes strong individual components, such as formants, and suppresses wideband noise,
whereas spectral flattening equalizes strong components and, at the same time, raises the
level of low-energy regions in the spectrum thus raising the level of the noise as well. Thus
it is worth while to look for other characteristics that perform spectral amplitude compres-
sion. Sreenivas (1981) proposes the 4th root of the power spectrum instead of the logarithm.
For larger amplitudes this characteristic behaves very much like the logarithm; for small
amplitudes, however, it has the advantage to go to zero and not to —oo. Weiss et al. (1966)
use the amplitude spectrum, i.e., the magnitude of the complex spectrum.

Indefrey et al. (1985) implemented these principles together with optional preproces-
sing to systematically investigate the performance of these PDAs. The four nonlinear spec-
tral functions mentioned before (power spectrum, amplitude spectrum, fourth root of
power spectrum, and logarithm) were, among other tests, evaluated using signals with add-
ed noise at various noise levels. The PDA was found to break down somewhere between
—6 and —12 dB SNR. This value is consistent with data reported elsewhere in the litera-
ture for related PDAs (Schroeder, 1968; Noll, 1970; Wise et al., 1976) and shows that there
exist a number of short-term PDAs that are extremely noise resistant.

Knowing that many errors arise from a mismatch during short-term analysis (which re-
sults in too few or too many pitch periods within a given frame), Fujisaki et al. (1986) inves-
tigated the influence of the relations between the error rate, the frame length and the actu-
al value of Ty for an autocorrelation PDA which operates on the LP residual. The optimum
occurs when the frame contains about three pitch periods. Since this value is different for
every individual voice, a fixed-frame PDA runs nonoptimally for most situations. For an
exponential window, however, this optimum converges to a time constant of about 10 ms
for all voices. For a number of PDAs, for example the autocorrelation PDA, such a window
permits recursive updating of the autocorrelation function, i.e., even sample-by-sample
pitch estimation-without-excessive-computational-effort.

4. Time-Domain Pitch Determination Algorithms

This category of PDAs is less homogenous than that of the short-term analysis methods.
One possibility to split them up is according to the way how the burden of data reduction
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is distributed among the preprocessor and the basic extractor. Doing this, we find most
time-domain PDAs between two extremes (Fig. 5):

1) The burden is imposed on the preprocessor. In the extreme case, only the waveform
of the first harmonic is offered to the basic extractor.
2) The burden is imposed on the basic extractor, which then has to cope with the whole

complexity of the temporal signal structure. In the extreme case, the preprocessor is totally
omitted.

Time-domain PDAs are principally able to track the signal period by period. At the out-
put of the basic extractor we find a sequence of period boundaries (pitch markers). Since
the local information on pitch is taken from each period individually, time-domain PDAs
are more sensitive to local signal degradations and thus less reliable than the majority of
their short-term analysis counterparts. On the other hand, time-domain PDAs may still op-
erate correctly even when the signal itself is irregular due to temporary voice perturbation
or laryngealization.
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4.1 Temporal Structure Investigation

A pitch period is the truncated response of the vocal tract to an individual glottal impulse.
Since the vocal tract behaves like a lossy linear system, its impulse response consists of a
sum of exponentially damped oscillations. It is therefore to be expected that the magnitude
of the significant peaks in the signal is greater at the beginning of the period than versus the
end (Fig. 6). Appropriate investigation of the signal peaks (maxima and/or minima) leads
to an indication of periodicity.

There are problems associated with this approach, however. First, the frequencies of
the dominant damped waveforms are determined by the local formant pattern and may
change abruptly. Second, the damping of the formants, particularly of a low first formant,
is often quite weak and can be overrun by temporary changes of the signal level. Third, if
the signal is phase distorted, different formants may be excited at different points in time.
These problems are surmountable, but they lead to relatively complicated algorithmic
solutions which have to regard a great variety of temporal structures. Since most of the pro-
gram instructions are decisions, however, these PDAs run relatively fast. The usual way to
carry out the analysis is the following (Reddy, 1967; N.J. Miller, 1975; D. Howard, 1989).

1) Do a moderate low-pass filtering to remove the influence of higher formants.

2) Determine all the local maxima and minima.

3) Exclude those extremes which are found insignificant until one significant point per
period is left.

4) Reject obviously incorrect points-by local eorrection.

- Structural analysis, especially when many possible structures have to be reviewed, is a
good application for self-organizing, nonlinear pattern recognition methods, i.e., for artifi-
cial neural networks. Such a PDA was introduced by I. Howard et al. (Howard and Huck-
vale, 1988, Howard and Walliker, 1989). The speech signal is first divided into 9 subbands
with a subsequent half-wave rectification and second-order linear smoothing in each chan-
nel. The underlying idea is to obtain a representation similar to that in a wide-band spectro-
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gram (cf. Fig. 11). The basic extractor consists of a four-layer perceptron structure, the in-
put layer comprising 41 successive samples with 9 channels each. Two hidden layers with
10 units each and a fully connected network are followed by a one-unit output layer which
is intended to yield an impulse when the network encounters a signal structure associated
to the instant of glottal closure. The network is trained using (differentiated) output signals
of a laryngograph (cf. Sect. 6.2) as reference data. Such a structure has the advantage that
it can be based upon several features occurring at different instants during a pitch period.
It was shown to outperform conventional devices of the same type, for instance the peak-
picking PDA (D. Howard, 1989; see next paragraph) which was evaluated for comparison.

A different solution originates from the analog domain (Dolansky, 1955; Filip, 1969;
Winckel, 1964). The envelope of the period is modeled by a cascade of analog differentia-
tors and diode-resistance-capacitance circuits with short rise time constants and compara-
tively long decay time constants. These circuits emphasize the principal peaks of the signal
and suppress all the others. The performance, however, strongly depends on the proper
adjustment of the decay time constants. For that reason this relatively simple device works
well only for a restricted range of F (about 2 octaves). A manual range switch or some-
thing similar is required if a wider range of Fy is to be analyzed. Due to its simplicity, this
principle has been revived in a recent application for cochlear prostheses (D. Howard,
1989). Using a logarithmic amplifier, Howard’s PDA avoids a lot of problems associated
with the older devices, and his device compares favorably to a number of other PDAs
tested for this special application.

4.2 Fundamental Harmonic Processing

Fy can be detected in the signal via the waveform of the fundamental harmonic. If present
in the signal, this harmonic is extracted from the signal by extensive low-pass filtering in the
preprocessor. The basic extractor can then be relatively simple. Figure 7 shows the princi-
ple of three basic extractors: the zero crossings analysis basic extractor as the simplest de-
vice, the nonzero threshold basic extractor, and finally the threshold analysis basic extrac-
tor with hysteresis. The zero-crossings analysis basic extractor sets a marker whenever the
zero axis is crossed with a defined polarity. This requires that the input waveform has two
and only two zero crossings per period. The threshold analysis basic extractor sets a marker
whenever a given nonzero threshold is exceeded. The threshold analysis basic extractor
with hysteresis acts like the normal threshold analysis basic extractor except that the mark-
er is not set before a second (lower) threshold is crossed in opposite direction. This more
elaborate device requires a lesser degree of low-pass filtering in the preprocessor.

The requirement of extensive low-pass filtering is one of two weak points of this other-
wise fast and simple principle. For the zero-crossings analysis basic extractor an attenua-
tion of 18 dB/octave is necessary within the range of Fj to be determined (McKinney, 1965;
cf. also Fig. 7). Accordingly, the amplitude of the signal at the basic extractor will vary by
more than 50 dB due to the variations of Fy alone. This dynamic range, increased by the
intrinsic dynamic range of the signal (at least another 30 dB), is too much for the PDA to
work correctly over the whole range of F. The application of a zero-crossings analysis ba-
sic extractor thus limits the possible fundamental frequency range. For the threshold analy-
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sis basic extractor the problem is not so acute, but the fact that the threshold must be
adapted to the overall signal amplitude complicates the design of the PDA. In addition
there is a systematic measurement artefact associated with the threshold-analysis basic ex-
tractor when the amplitude of the input signal varies and the threshold is not properly
adapted (Fig. 8). Another inaccuracy (Fig. 9) is intrinsic to the first partial of the signal.
When Fj is close to the formant F1, variations of that formant result in time-variant phase
distortions of the first partial which will locally change the period duration and with it the
Ty estimate. These inaccuracies are in the order of a few percent; yet they may be intoler-
able if the respective application requires high accuracy.

In a number of applications, such as voice quality measurement or preparation of refer-
ence elements for time-domain speech synthesis (Charpentier and Moulines, 1989), where
the signals are expected to be clean, the use of a PDA applying first-partial processing may
be advantageous. Dologlou and Carayannis (1989) developed a PDA that overcomes a
great deal of the problems associated with the filter necessary to isolate the first partial. An
adaptive linear-phase low-pass filter is applied in the preprocessor. This filter consists of
a variable-length cascade of second-order filters with a double zero in the z plane atz=—1.
These filters are consecutively applied to the input signal; after each step the algorithm

at the same time
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(threshold as in second line)
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tests whether the higher harmonics are sufficiently attenuated; if yes, the filter stops. T} is
then derived from the remaining first partial by a simple maximum detector. Very low-fre-
quency noise is tolerable since it barely influences the positions of the maxima.

The second weak point is that this principle is a priori restricted to environments where
the first harmonic is present in the signal. There are many applications where this is the
case (for instance, in voice quality measurement). If such a PDA, however, is to be applied
to processing band-limited signals, the first harmonic must be enhanced or reconstructed.
One way to do this is nonlinear distortion. In that respect, many proposals have been made
from the beginning on (e.g., Griitzmacher and Lottermoser;1937; Risberg et al., 1960). No
single nonlinear characteristic, however, is able to enhance the first harmonic of the signal
in an optimal way for any situation, i.e., for any speaker or environmental condition
(McKinney, 1965; Hess, 1979); some of them work well in a constrained environment (for
instance only with band-limited signals or male voices) or in a realization where several
channels with different nonlinear functions are combined (Hess, 1979).

4.3 Simplification of the Temporal Structure

Algorithms of this type take on some intermediate position between the principles of struc-
tural analysis and fundamental harmonic extraction. The majority of these algorithms fol-
low one of two principles: a) inverse filtering, and b) epoch detection. Both these prin-
ciples deal with the fact that the laryngeal excitation function has a temporal structure
which is much simpler and more regular than the temporal structure of the speech signal
itself, and both methods, when they work, are able to follow definition (1) if the signal is
not grossly phase distorted.

The inverse filter approach cancels the transfer function of the vocal tract and thus re-
constructs the laryngeal excitation function (cf. also Sect. 5.1). If one is interested in pitch
only and not in the excitation function itself, a crude approximation of the inverse filter is
sufficient. Such an approximation is realized for instance when the analysis is confined to
the first formant (Hess, 1976). The inverse filter approach has one weak point which occurs
frequently with female voices. When F is high, it may coincide with the first formant. If the

Temporal Structure Simplification Fig. 10. Time-domain PDAs:
temporal structure simplification

INVERSE FILTERING EPOCH DETECTION
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inverse filter is not blocked, it then removes the fundamental harmonic (which is extremely
strong in this case) from the signal and brings the PDA into failure.

The second principle, epoch extraction, is based upon the fact that at the beginning of
each laryngeal pulse there is a discontinuity (in form of an impulse) in the second deriva-
tive of the excitation function. Usually this discontinuity cannot be reliably detected in the
speech signal due to phase distortions which occur when the waveform passes the vocal
tract. The signal is thus first phase shifted by 90° (applying a Hilbert transform). The
squares of the original and the phase shifted signals are then added and yield a new signal
which represents the instantaneous amplitude of the signal-and now shews-a distinct peak
at the time when the discontinuity in the excitation function occurs. The original method
works only when the spectrum of the investigated signal is flat to some extent. To enforce
spectral flatness, the analyzed signal is for instance band-limited to high frequencies well
above the narrow-band lower formants (Ananthapadmanabha and Yegnanarayana, 1975).
Another way is is to analyze the LPC residual (Ananthapadmanabha and Yegnanarayana,
1979) or to filter the signal into subbands (De Mori et al., 1977).

The epoch detection principle depends on the presence of a discontinuity in the second
derivative of the laryngeal excitation function. This discontinuity is often weak, especially
in back vowels like [u], when a formant exactly coincides with the first or a higher harmon-
ic, or when speech is uttered with a soft or a falsetto voice. In two more recent approaches
(Di Francesco and Moulines, 1989; Cheng and O’Shaughnessy, 1989), this drawback was
overcome by the finding that the global statistical properties of the waveform change with
glottal opening and closing as well. These PDAs, which exploit different features of the
signal and were developed independently from each other, derive and apply a generalized
maximum-likelihood measure that indicates the instant of glottal closure more precisely
than previous epoch-detection PDAs (cf. also Sect. 5.2).

4.4 Multi-channel approaches

Except for the algorithmic investigation of the temporal structure and — nowadays —
epoch detection, most simple time-domain PDAs are restricted with respect to the range
of Fy or the type of signal to be processed. One way to increase the range or the reliability
of these PDAs is to implement several of them in parallel and to perform some decision as
to which one has the ”correct” output. The partial PDAs may be identical in design, and
each of them may process a subrange of F (McKinney, 1965; Léon and Martin, 1969). On
the other hand, they may apply different principles without restriction of the frequency
range. The PDAs by Risberg et al. (1960) or by Hess (1979), for instance, use several non-
linear functions to enhance the first harmonic in different ways. Gold and Rabiner (1969)
combine several simple peak detection basic extractors together with a pattern-matching
procedure. The selection criteria in order to find the most likely channel are defined by a
certain channel hierarchy, by a regularity check applying a minimum-frequency selection
principle (Risberg et al., 1960; Hess, 1979), by statistical measures (Bruno et al., 1982), or
by syntactic rules (De Mori et al., 1977). The selection is continuously checked so that the
PDA is able to change its choice at any time.
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(Yaggi, 1962). Such a configura- \/\/\/\/\/\/\/
tion was later used by Howard

and Walliker (1989) as input to a t
neural network

One problem with time-domain multichannel PDAs is that the individual channels
often mark period boundaries at different instants in time, for instance when significant
maxima and minima are exploited independently of each other (Gold and Rabiner, 1969).
Unless there is a special synchronization routine (Hess, 1979), such PDAs are no longer
able to correctly synchronize themselves with the signal and thus have to operate according
to the incremental definition (3) or even the short-term definition (4) although they per-
tain to the time-domain category.

Multi-channel preprocessing by a filter bank dates back to the days of the channel vo-
coder where the spectral analyzer could also be used as a preprocessor for pitch deter-
mination. If the bandwidths of the channels are not too great, there will not be more than
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one partial in the lower channels and not more than one formant in the mid and upper
channels each. A PDA can thus easily extract the fundamental harmonic once it knows in
which channel it is to be found. On the other hand the filter bank output, taken as a whole,
behaves in a way similar to a wide-band spectrogram. Those channels which carry the
waveforms of the formants coherently reveal maxima of the envelope at the beginning of
each pitch period after the instant of glottal closure. This feature can also be exploited for
a subsequent structural analysis.

One of the first PDAs of this kind was developed and investigated by Yaggi (1962). Yag-
gi, however, reported problems with phase-distortions in the filter bank: With nowaday’s
digital filter technology such filter banks can be built as linear-phase networks, and the re-
cent wavelet transform (cf. the PDA by Katambe and Boudreaux-Bartels, 1990), which
may be applied like a bank of octave filters, provides another effective means for its imple-
mentation. Such a preprocessor (with 9 channels) also serves as the input for the PDA by
I. Howard et al. (1989) where the basic extractor is realized by a neural network which per-
forms a structural analysis and is trained to determine the instant of glottal closure.

5. Glottal Inverse Filtering. Determining the Instant of Glottal Closure

5.1 Glottal Inverse Filtering

Glottal inverse filtering is the approximative reconstruction of the excitation signal (the
glottal waveform) from the speech signal. From the linear model of speech production we
know that the voiced speech signal x(n) can be thought of as being generated by the pulse
generator characterized by its z transform P(z). The pertinent pulse sequence p(n) passes
the glottal shaping filter G(z), at the output of which we have the glottal excitation signal
s(n). This signal excites the supraglottal system consisting of the vocal tract ¥(z) and the
radiation component R(z). In terms of transfer functions we obtain

X() =P() G2) V(z) 4, €))

where A4 represents the overall amplitude. A PDA, in this model, can be defined as a device
which determines P(z) from X(z). For glottal inverse filtering the task would then read

X()
V(iz) R2) A ©)

Thus a filter has to be applied whose transfer function reverts the influence of the vocal
tract and the radiation component.

In speech production the radiation component is the low-impedance load which termi-
nates the vocal tract; the volume velocity of the air flow at the lips (and the nose) is con-
verted into sound pressure in the distant field. In a first approximation, which is valid for
lower frequencies where the wavelength is large compared to the diameter of the mouth
opening, this conversion involves a differentiation, causing a zero at zero frequency. In the
inverse filter this zero is reverted by an integrator component, i.e., by a first-order recur-
sive filter with a pole near z=1. For reasons of stability, the pole must stay inside the unit
circle.

S(z) = P(2) G(2) =



Fig. 12a—h. Inverse—filter analysis. (a) Signal: sustained vowel /e/, speaker LIB (male), 32 ms
per line; (b) waveform of the formant F1; (c—e) same as (b), this time for the formants F2—F4;
(f) differentiated output signal of the inverse filter; (g) output signal of the inverse filter; (h)
reconstructed glottal excitation signal, filtered by the inverse filter and the integrator. The in-
verse filter was tuned to the following formant frequencies and bandwidths: F1=357 Hz,
F2=2056 Hz, F3=2493 Hz, F4=3500 Hz; B1=26 Hz, B2=40 Hz, B3=150 Hz, B4=250 Hz. The
transfer function of the integrator filter used is 1/H;(z)=1-0.995z=1. All signals were normal-
ized before plotting. The numbers on the right—hand side of (a—e) indicate the amplitude of the

signal and the individual formants; the amplitude of the signal was normalized to a value of
10000

As glottal inverse filtering is intended to yield a waveform rather than certain instants in
time, the signal must not at all be phase distorted at low frequencies — a condition nowa-
days easily met by digital recording equipment.

Glottal inverse filtering requires accurate determination of all formants. For this the
following principtes have-been implemented:

1) individual determination of the different formants, mostly in an interactive way (e.g.
Lindgvist, 1965);

2) automatic formant measurement by nonstationary linear-prediction (LPC) analysis
during the closed-glottis interval (Wong et al., 1979, Alku, 1992); and

3) cepstrum techniques.

In the classical method (e.g. Lindgvist, 1965), which is carried out in an interactive way, an
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antiresonance circuit (i.e., a second-order filter with a complex zero) is provided to cancel
each formant individually. The input signal is confined to stationary vowels with significant
high-frequency components and formants that are well separable, such as [a] or [¢]. A
crude formant analysis provides reasonable initial estimates. Then the antiresonance fil-
ters are manually adjusted to the frequencies and bandwidths of the individual formants.
Figure 12 shows an example.

A glottal inverse filter using linear-prediction (LPC) analysis was proposed by Wong,
Markel, and Gray (1979). Linear prediction models the speech tract as a digital all-pole
filter,

k
x(n) = e(n) + Zx(n—i) , (10)
i=1

and determines the filter coefficients in such a way that the filter optimally matches the
structure of the signal. “Optimally,” in this respect, means that the filter has been opti-
mized according to a given criterion. The criterion mostly used involves minimizing the
short-term energy of the prediction error, i.e., the energy of the residual signal e(n) within
the frame analyzed. This criterion must be further confined for this special application.

Equation (10) says that a sample x(n) can be approximately predicted as the weighted
average of the k previous sample of the signal x; e(n) will be the prediction error at the
instant n. From the speech production point of view, if x(n) is the speech signal, and if the
filter is to serve as a model for the speech tract, then e(n) represents some kind of excita-
tion signal; however, e(n) is usually not identical with the glottal waveform. LPC analysis
can be used here when the algorithm is modified in such a way that e(n) represents the
glottal waveform itself or at least a waveform having a defined relation to it. The most
straightforward way to achieve this is to verify that the LPC filter transfer function A2)
represents the transfer function V/(z) of the vocal tract; in this case the residual signal e(n)
represents the glottal waveform except for the radiation component, whose reciprocal
must be supplied in the form of the first-order integrator filter already known from the ear-
lier discussion in this section.

If A(z) is to represent the vocal-tract transfer function V(z) it is necessary to be certain
that the poles of A(z) represent formants only and nothing else. This leads to a modifica-
tion of the LPC algorithm which involves the following two steps.

1) The poles of A(z) have to be explicitly determined after the analysis; poles that do not
pertain to a formant must be excluded from the inverse filter. Routines which perform this
task are standard in most scientific program libraries. Once the poles are explicitly known,
one can easily assign them to the formants as far as possible and exclude the remainder.
One can also exclude a whole frame from further processing if the LPC algorithm has ob-
viously missed a formant (this happens, for instance, when two real poles are supplied
instead of a low-frequency or high-frequency formant).

2) In order to represent the vocal-tract transfer function V(z) as accurately as possible,
the LPC analysis should be carried out during the closed-glottis interval only. During the
open-glottis interval the subglottal system and the vocal tract are coupled via the glottis.
This coupling affects the transfer function of the supraglottal system: subglottal formants
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Fig. 13a-f. Glottal inverse filter by Wong et al. (1977, 1979): example of performance. (a) Signal:
sustained vowel /e/, male speaker, 32 ms per line; same signal as in Fig.12; (b) prediction error
depending on the starting point q of the frame with the maximum of the normalized error indi-
cated on the right-hand side; (c) reconstructed glottal waveform (the integrator being the same
as in Fig.12); (d) differentiated output signal of the inverse filter; (e) locations of the poles of
A(z) in the z plane for those cases where A(z) was found appropriate to scrve for use in the in-
verse filter; (f) locations of the poles in A(z) for all other cases; (————— ) frame selected for
computation of the inverse filter. All the frames which pertain to (¢) have been marked in (b) by
a short continuation line below the baseline. Formant frequencies and bandwidths for the in-
verse filter applied: F1=352 Hz, F2=2081 Hz, F3=2652 Hz, F4=3733 Hz; B1=10 Hz, B2=109
Hz, B3=193 Hz, B4=246 Hz. The constraints of the LPC analysis to separatc thosc frames which
arc suited for sclection for the inverse filter (¢) and the remainder (f) are rather simple. A frame
was excluded from selection when 1) the pertinent LPC filter was not stable, 2) less than 4 for-
mants were detected in the frame, 3) the frame contained a formant frequency below 250 Hz, or
4) one or several formants had excessively large bandwidths. Although there is some variance in

the estimates.in (e);the-formant frequencies-and-bandwidths are determimed rather consistently
for the pertinent frames

and antiformants are added to the overall transfer function, and the frequencies and band-
widths of the vocal-tract formants are slightly changed. (Wakita and Fant, 1978). For nor-
mal LPC analysis the global estimate is sufficient; here, however, greater accuracy is re-
quired.
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Compared to an ordinary frame for LPC, the closed-glottis interval is rather short so that
the covariance method of linear prediction has to be applied. If the assumption holds that
the vocal tract is not excited during the closed-glottis interval, the prediction error will be
very low in this case since the vocal tract then represents a linear passive all-pole system.
16 determine the closed-glottis interval therefore the LPC analysis (using the covariance
method and a frame length K which guarantees that k+K+ 1 does not exceed the length of
the closed-glottis interval) must be carried out at each sample individually (i.e., using a
frame interval equal to the sampling interval of the signal). Low prediction error then indi-
cates that the frame is totally embedded in the clesed-glottis interval (cf. Fig. 13).

An alternative criterion for the selection of the closed-glottis interval is the stability of
the modeled filter A(z). During the closed-glottis interval the waveforms pertaining to the
formants always decay; in this case the LPC filter A(z) will be stable. On the other hand,
an instable filter 4(z) indicates that there is strong excitation within the analysis interval.

A problem with the algorithm by Wong et al. (1979) is that it requires an LP analysis
over the closed-glottis interval. In some voices the closed-glottis interval is very short, or
the glottis even does never close completely. This degrades the estimate of the formants
and thus the performance of this algorithm. Alku (1992) developed a glottal inverse filter
that allows us to perform an iterative LP analysis more globally. First the general slope of
the spectrum is approximately flattened by an inverse filter of order 1 to yield an optimal
starting point for formant estimation. An LP analysis is carried out over that filtered signal
toyield a representation for the transfer function V(z) of the vocal tract. The original signal
is then inverse filtered with this filter and passed through an integrator filter. This yields a
reasonable estimate of the glottal waveform which is then refined in a second iteration
which is almost identical to the first part of the algorithm. It is only now, however, that the
frame length is confined to exactly one pitch period ranging from one point of maximal
glottal opening (which is determined from the glottal waveform estimate) to the next one.
Again the spectrum is flattened using a low-order inverse LP filter, and the vocal-tract
transfer function is estimated. Since the algorithm now acts period synchronously, the re-
sults are much more accurate than in the first step. Again the original signal is inverse fil-
tered with 1/V(z) and passed through an integrator filter to cancel the effect of lip radi-
ation,; this yields the final estimate for the glottal waveform.

5.2 Determining the Instant of Glottal Closure

Among all events that characterize the pitch period the instant of glottal closure (IGC) oc-
cupies a key position. Due to the Bernoulli force exerted on the vocal cords by the air flow
in the glottis during the open-glottis interval, the vocal cords are so strongly forced togeth-
er that they close abruptly and remain closed for about half the glottal cycle (for details see
the discussion in Sect.3.1). The air flow is abruptly terminated; this causes a discontinuity
in the time derivative of the glottal volume velocity. All formants, particularly the higher
ones, are thus simultaneously excited at the IGC. It is thus justified from the speech pro-
duction point of view to define the beginning of the pitch period in the speech signal to coin-
cide with the IGC.
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The IGC is rather prominent in normal phonation, i.e., modal register and medium
voice effort. It is rather prominent during vocal fry as well. For soft voices as well as for the
falsetto register glottal closure still occurs, but somewhat more gradually. In some special
cases (breathy voice, certain voice pathologies) the glottis never closes completely. This
kind of speech is characterized by weak higher formants. On the other hand, the instant of
glottal opening, which passes rather smoothly most of the time, tends to exhibit a second
discontinuity (and thus tends to become a second point of excitation) when the voice effort
is high.

We can thus expect that the IGC usually represents the-most significant and — at the
same time — the most easily detectable single event within the pitch period when a refer-
ence point with respect to the excitation function is required. In spite of this the task of
IGC determination is not at all trivial. ’

Scanning the PDAs discussed up to now, we see that the algorithms that apply structural
simplification (in particular epoch detection) are best suited for IGC determination. In
principle most time-domain PDASs place their markers at positions which have some de-
fined relation to the excitation signal. But in many cases this relation is time variant since
it depends on the momentary state of the vocal tract. In addition, IGC determination im-
plies the detection of a discontinuity, which is wide-band information, and which is thus
masked both by narrow-band formants and high-frequency attenuation in the signal.

The PDA by Ananthapadmanabha and Yegnanarayana (1979) raises the question of the
phase of the excitation signal. The ideal case is given when the excitation pulse has a unipo-
lar peak. If the excitation signal is phase shifted by 90°, the IGC coincides with a zero
crossing of the excitation pulse, and the amplitude of the pulse is much reduced. This diffi-
culty is overcome by investigating the instantaneous magnitude of the signal which is pulse-
like when the spectrum of the signal investigated is approximately flat.

The already-mentioned PDA by I. Howard et al. (1989), which applies a neural network
for structural analysis of the output of a filter bank, can be trained toward detecting the
IGC. The neural network performs some kind of holistic scan of the structural properties
of the signal segment at its input layer and fires at the moment for which it has been
trained. This means that the temporal assignment between the temporal structure of the
signal and the instant at which the device signals a pitch period boundary is arbitrary and
a matter of training. The PDA will thus be trained to detect the IGC when the desired out-
put of the neural net has such a shape that it is close to unity at the IGC and close to zero
everywhere else. The differentiated output signal of a laryngograph, after suitable normal-
ization, has this property (cf. Sect. 6.2).

6. Evaluation and Application

To evaluate the performance of a measuring device, one should have another instrument
with at least the same accuracy. If this is not available, at least objective criteria — or data
— are required to check and adjust the behavior of the new device. In pitch and voicing
determination both these bases of comparison are tedious to generate. There is no PDA
which operates without errors (Rabiner et al., 1976). There is no reference algorithm, even
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with instrumental support, that goes completely without manual inspection or control
(Krishnamurthy and Childers, 1986; Hess and Indefrey, 1987). Only rather recently speech
databases with reference pitch contours and voicing information have become available
(e.g., Carré et al., 1984; Picone et al., 1987), and only then designers of new PDAs started
providing detailed data on the performance of their algorithms (e.g. Fujisaki et al., 1986;
Indefrey et al., 1985).

6.1 Error Analysis in Pitch Determination

According to the classical study by Rabiner et al. (1976), which established the guidelines
for the performance evaluation of these algorithms, PDAs (and voicing determination al-
gorithms, VDAs) commit four types of errors: 1) gross pitch determination errors; 2) fine
pitch determination errors, i.e., measurement inaccuracies; 3) voiced-to-unvoiced errors;
and 4) unvoiced-to-voiced errors. The latter two types represent errors of voicing deter-
mination whereas the first ones refer to pitch determination.

Gross pitch determination errors are ”drastic failures of a particular method or algorithm
to determine pitch” (Rabiner et al., 1976). Usually an error is regarded to be gross when
the deviation between the correct value of Ty or Fyy and the estimate of the PDA exceeds
the maximum rate of change a voice can produce without becoming irregular [Rabiner et
al. (1976): 1 ms; Hess and Indefrey (1987): 10%; Krubsack and Niederjohn (1989): 0.25
octave]. On the other hand, errorlike situations may also arise from ”drastic failures of the
voice to produce a regular excitation pattern,” which is not very frequent in well-behaved
speech (Dolansky and Tjernlund, 1968), but is nearly always the case when the voice tem-
porarily falls into vocal fry (Fourcin, 1974; Hollien, 1974; Secrest and Doddington, 1982;
cf. Fig. 2). Hence, gross errors arise mainly from three standard situations.

1) Adverse signal conditions: strong first formants, rapid change of the vocal tract posi-
tion, band-limited or noisy recordings. Good algorithms reduce these errors to a great ex-
tent, but cannot avoid them completely (Rabiner et al., 1976).

2) Insufficient algorithm performance: e.g., mismatch of Fp and frame length (Fujisaki et
al., 1986); temporary absence of the key feature in some algorithms.

3) ”Errors” that arise from irregular excitation of voiced signals. Since most algorithms
perform some averaging or regularity check, they can do nothing but fail when the source
gets irregular.

When a PDA is equipped with an error detecting routine (and the majority of PDAs are
even if no postprocessor is used), and when it detects that an individual estimate may be
wrong, it is usually not able to reliably decide whether this situation is a true measurement
error — which-sheuld be eerrected or-atteast indicated—or asignalirregularity, where the
estimate may be correct and should be preserved as it is. This inability of most PDAs to
distinguish between the different sources of errorlike situations is one of the great prob-
lems in pitch determination yet unsolved.

Measurement inaccuracies cause a noisiness of the obtained T or Fy contour. They are
small deviations from the correct value but can nevertheless be annoying to the listener.
Again there are three main causes.
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1) Inaccurate determination of the key feature. This applies especially to algorithms that
exploit the temporal structure of the signal, for instance when the key feature is a principal
maximum whose position within a pitch period depends on the formant F1.

2) Intrinsic measurement inaccuracies, such as the ones introduced by sampling in digital
systems.

3) ”Errors” from small fluctuations of the voice (jitter or shiommer), which contribute to
the perception of “naturalness” and should thus be preserved (or even measured).

Voicing errors are misclassifications of the VDA. We have to distinguish between voiced-
to-unvoiced errors where a frame is classified unvoiced although it is in fact voiced, and
unvoiced-to-voiced errors with the opposite way of misclassification. This scheme, as estab-
lished by Rabiner et al. (1976), does not take into account mixed excitation. Voiced-to-un-
voiced errors and unvoiced-to-voiced errors must be regarded separately because they are
perceptually not equivalent (Viswanathan and Russell, 1984), and the reasons leading to
such errors in an actual implementation may be different and even contradictory.

6.2 Developing Reference PDAs with Instrumental Help

A number of former evaluations used a well-known algorithm, for instance the cepstrum
PDA, whose performance was known to be good, and compared the algorithm(s) to be
tested to the results of that one (Hess, 1983). Rabiner et al. (1976) used an interactive PDA
to generate reference data. This procedure proved reliable and accurate but needed a lot
of human work. Dal Degan (1982) took the output signal of a vocoder, where the pitch
contour was exactly known, as the standard for his PDA evaluation. Bruno et al. (1982)
evaluated the performance of a two-channel PDA using the output signal of a mechanic
accelerometer which derives the information on pitch from the vibrations of the neck tis-
sue at the larynx. The same device (Stevens et al., 1975) was used by Viswanathan and Rus-
sell (1984) for their evaluation of five PDAs. Indefrey et al. ( 1985) used a laryngograph to
yield the signal for generating a reference contour.

Among all the algorithms used for determining a reference pitch contour, those meth-
ods appear most efficient which make use of an instrument (such as a mechanic accelerom-
eter or a laryngograph) that derives pitch directly from the laryngeal waveform. This type
of algorithm avoids most errors pertinent to the problem of pitch determination from the
speech signal, and it permits using natural speech for the evaluation of the performance of
PDAs. Among the many instruments available [see (Hess, 1983, Chap. 5) for a survey] the
laryngograph (Fourcin and Abberton, 1971; Childers and Krishnamurthy, 1985) is espe-
cially well suited for this kind of application. It is robust and reliable, does not prevent the
speaker from natural articulation, and gives a good estimate for the instant of glottal clo-
sure. A number of PDAs have been designed for this device (e.g. Krishnamurthy and
Childers, 1986; Hess and Indefrey, 1987). In addition, Childers et al. (1989) propose a
four-category VDA exploiting the speech signal and the laryngogram. In the following, one
of these algorithms (Hess and Indefrey, 1987) is presented in some more detail.

The principle of the laryngograph is well known. A small hi gh-frequency electric current
is led through the larynx by a pair of electrodes which are pressed against the neck at the
position of the larynx from both sides. The opening and closing of the glottis during each
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Fig. 14a-c. Speech signal (a), laryngogram (b), and differentiated laryngogram (c). The markers
delimiting the individual periods were derived from the maxima of (c). Signal: transition [ja];
speaker WGH (male)

pitch period causes the laryngeal conductance to become time variant; thus the HF current
is amplitude modulated. In the receiver the current is demodulated and amplified. Finally,
the resulting signal is high-pass filtered in order to remove unwanted low-frequency com-
ponents due to vertical movement of the larynx

Figure 14 shows an example of the laryngogram (the output signal of the laryngograph)
together with the pertinent speech signal. In contrast to the speech signal, the laryngogram
is hardly affected by the momentary position of the vocal tract, and the changes in shape
or amplitude are comparatively small. Since every glottal cycle is represented by a single
pulse, the use of the laryngograph reliably suppresses gross period determination errors. In
addition, it supplies the basis for a good voiced-unvoiced discrimination since the laryngo-
gram is almost zero during unvoiced segments where the glottis is always open. Nonethe-
less, the laryngograph is not free from any problem: it may fail temporarily or permanently
for some individual speakers, or it may miss the beginning or end of a voiced segment by
a short interval, for instance when the vocal folds, during the silent phase of a plosive, con-
tinue to oscillate without producing a signal, or when voicing is resumed after a plosive,
and the glottis does not completely close during the first periods (Childers and Krishna-
murthy, 1985). For such reason, visual inspection of the reference contour is necessary
even with this configuration; these checks, however, can be confined to limited segments
of the signal.

What key feature is best used for delimiting the individual periods? According to the
theory of voice excitation (van den Berg, 1958; cf. also Stevens, 1977), the instant of glottal
closure is the point of maximum vocal-tract excitation, and it is justified to define this
instant to be the beginning of a pitch period. In the laryngogram this feature is well docu-
mented. As long as the glottis is open, the conductance of the larynx takes on a minimum,
and the laryngogram is low and almost flat. When the glottis closes, the laryngeal conduc-
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tance goes up, and the laryngogram shows a steep upward slope. The point of inflection
during the steep rise of the laryngogram, i.e., the instant of the maximum change of the
laryngeal conductance, was found suited best to serve as the reference point for this event.

To press measurement inaccuracies due to signal sampling below the difference limen
for perception of F(y changes over the whole range of F, a temporal resolution correspond-

ing to a sampling frequency of more than 100 kHz is required. The strategy of the algo-
rithm is as follows.

1) The laryngogram, originally sampled at 16 kHz, is digitally differentiated by a first-
order nonrecursive differentiator filter. The algorithm then determines the significant
maxima of the differentiated laryngogram; spurious maxima due to noise are suppressed
by simple threshold discrimination.

2) The locations of the maxima of the differentiated laryngogram represent the raw
positions of the period delimiters ("markers”); around these points the sampling rate of
the signal is increased by a factor of 8; after differentiating and interpolation, the location
of the maximum is determined with a temporal resolution of 7.8 us.

With passband and stopband cutoff frequencies of 5 and 9 kHz, respectively, and a stop-
band attenuation of more than 72 dB (to keep aliasing distortions below the level of the
quantizing noise of the laryngogram), a 144th-order linear-phase interpolator filter proved
necessary. The first-order differentiator filter is sufficient to estimate the positions of the
raw markers at the original sampling rate of 16 kHz. For the accurate measurement, how-
ever, a 7™-order differentiator filter (referring to the original sampling frequency of 16
kHz) gives a good approach to the ideal differentiator in the interesting frequency range
below 5 kHz. To minimize roundoff errors, the two filters had to be combined to a 200th-or-
der nonrecursive filter so that differentiation and interpolation finally are performed in
one step at the increased sampling frequency of 128 kHz. Same as before, this filter is only
applied in the immediate vicinity of the raw markers.

Although the use of the laryngograph reduces the number of gross errors to a minimum,
there are still occasional failures of the algorithm in specific situations. Hence a simple
error detection logic based on threshold analysis had to be incorporated. First of all, this
logic suppresses weak markers that may occur due to noise in the laryngogram. If a rapid
vertical movement of the larynx causes a "marker” to be set, this marker will occur in isola-
tion, not embedded in a train of markers as in voiced speech. Hence, if a single marker or
a sequence of not more than two markers is detected within an unvoiced interval of at least
200 ms on either side, the logic treats these markers as erroneous and removes them. For
the case that this is not yet sufficient, an interactive routine for visual inspection has been
provided that may be used to manually accept or reject individual markers that were not
reliably accepted or rejected by the automatic procedure.

6.3 Comparative Evaluations — Some More Results

Due to the absence of reliable criteria and systematic guidelines, rather few publications
on early PDAs included a quantitative evaluation of the algorithms presented. The main
results of the classic study by Rabiner et al. (1976) read as follows.
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1) None of the PDAs involved worked without errors, even under good recording condi-
tions. Each PDA had its own ”favorite” error; nevertheless, any error condition actually
occurred for any of the PDAs.

2) Almost any gross error is perceptible; in addition, unnatural noisiness of a pitch con-
tour is well perceived.

3) The subjective evaluation did not match the preference of the objective evaluation.
In fact, none of the objective criteria (number of gross errors, noisiness of the pitch con-
tour, voicing errors) correlated well with the subjective scale of preference.

Hence the question what errors in pitch and voicing determination are the really annoy-
ing ones for the human ear remained open. This issue was further pursued by Viswanathan
and Russell (1984) who developed objective evaluation methods that are closely corre-
lated to the subjective judgments. The individual error categories are weighted according
to the consistency of the error, i.e., the number of consecutive erronoeus frames, the mo-
mentary signal energy, the magnitude of the error, and the special context.

Indefrey et al. (1985), concentrating on the evaluation of PDAs only, investigated sever-
al short-term PDAs in various configurations. Some of the results were shown further
above (Sect. 3.2). In a sequel, Indefrey (1987) added several other PDAs to this evaluation.
He showed that in many situations different short-term analysis PDAs behave in a comple-
mentary way so that combining them to a multi-channel PDA could lead to a better overall
performance.

7. Aspects of Application

The area of speech communication systems is one of the important application areas of
pitch determination. Other areas include a) phonetics and linguistics (including musicolo-
gy), i.e., the measurement of pitch contours as carriers of prosodic, phonetic, and musical
information; b) education: training aids for the deaf or teaching aids for foreign languages;
and c) the application as a diagnostic aid in voice pathology and phoniatrics. Here deter-
mination of source parameters from the signal can serve as a quick and easily accessible
help for voice diagnostics and for examining the progress of voice therapy. In phoniatric
practice direct measurement and investigation of the speech organs is usual and natural,
and pitch determination instruments are a most valuable aid; deriving source parameters
from the signal, however, is a hopeful alternative, in particular for early detection of devel-
oping voice diseases and for diagnostic evaluation of slight pathologies (Davis, 1978).
Each of these applications has a different profile of requirements (Hess, 1983:521).
With respect to these requirements the respective applications can be subdivided accord-
ing to whether the human ear is the final ”customer” of a measured pitch contour or not.
If the human ear is at the end of the chain the PDA is a part of, it is crucial to know whether
there is a time delay for manual correction permitted or not. There is no time in vocoder
systems or in an electronic musical instrument or in the recent application of speech-pro-
cessing hearing prostheses, e.g., cochlear implants (D. Howard, 1989; Fourcin et al., 1983).
There is time for manual correction, on the other hand, in high-quality speech synthesis
systems which concatenate original speech data in parametric or waveform-coded repre-
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sentation and need accurate pitch determination to manipulate pitch and duration (e.g.,
Charpentier and Moulines, 1989). Even a laryngograph may be applied for such a purpose
(Krishnamurthy and Childers, 1986). In the last few years powerful waveform coding
schemes which do not need a PDA at all or only a very rudimentary one have been devel-
oped that make a vocoder unnecessary in many applications. Those applications which will
continue to require a PDA in speech communication systems, such as hearing prostheses
or high-quality speech synthesis from stored data, are more fault tolerant than the vocoder.
Future developments in the domain of pitch and voicing determination are thus likely to
move away from the search for a new principle that-is-able ”to solve-everything” toward
improved implementations of known algorithms that are cheap, fast and robust at the
same time.
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Estimation of Fundamental Frequency
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This paper describes an algorithm for the estimation of voice fundamental
frequency (F0). While F0 seems “well defined” for normal voiced speech, in
fact there are many situations where the “true” F0 is ambiguous. Thus, an
operational definition of FO0 is called for. The approach described below has
been refined by several authors over a period of almost 20 years. Programs
embodying various versions of the algorithm have been in use for a comparable
length of time and have demonstrated excellent performance.

1 Fundamental Frequency Estimation

Attempts to estimate a voicing state and a fundamental frequency in the speech
signal are motivated by a speech production model which views the production
mechanism as the concatenation of a quasi-stationary excitation source, and
a quasi-stationary linear filter corresponding to the slowly-varying vocal track
shape. The model produces unvoiced speech (as in the ”s” sound) using white
noise as the excitation source, and voiced speech (as in vowels) using a pulse
train corresponding to glottal activity. Ideally, the voiced speech signal would
be periodic, but in practice, the “true” period is sometimes equivocal, especially
if only local-in-time evidence is available. This potential for ambiguity remains
regardless of the transformation applied to the signal.

1.1 Normalized Cross Correlation

In the following discussion, we transform the speech signal using the cross-
correlation function (CCF). Given

Sm, m=0,1,2,3,...,

a sampled speech signal with sampling interval T', analysis frame interval ¢, and
a window size w, at each frame we advance z = t/T samples with n = w/T
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samples in the correlation window. w is chosen to be in the neighborhoos of the
expected FO0 period; t is sized to adequately sample the time course of changes
in F0. The CCF of K samples length may then be defined as

m+n—1
bk = Diem  SiSi+k
mk = —1—m -~

b
VEMEm4k

k=0,K-1,m=1z;,1=0,M -1,

where

€; = Z 812,
1=j
and i is the frame index for M frames. Note that —1.0 < ¢ < 1.0.

We refer to the value of k as the lag and to ¢ as the frame inder. We
can represent ¢, graphically by assigning lag to the ordinate, frame index (or
time) to the abscissa and the value of ¢ at the corresponding time and lag to the
degree of shading, with dark shading representing high values (close to 1.0) and
white representing low values (close to -1.0). These graphical representations
are referred to as correllograms.

An utterance containing clear and problematic voiced speech sections with
the corresponding CCF’s and correllogram may be seen in Figure 1. The only
local evidence for the true F0is the location and height of maxima in the CCF. A
segment of unvoiced speech and its CCF may be seen in Figure 1(D). Note that,
in general, the CCF of voiced speech has maxima with comparable amplitudes
at lag intervals corresponding to integer multiples the fundamental period while
the CCF of unvoiced speech has its most prominent maximum at zero lag. If the
CCF for the problematic case is viewed in a larger temporal context, as in the
correlogram of Figure 1(B), the location of the local maximum corresponding
to the “true” F0 becomes more evident.

Note the following general observations regarding speech and speech CCF's:

1. The local maximum in ¢ corresponding to the “true” FO0 for voiced speech

(excepting the maximum at zero lag) is usually the largest and is close to
1.0.

2. When multiple maxima in ¢ exist and have values close to 1.0, the maxi-
mum corresponding to the shortest period is usually the correct choice.

3. True ¢ maxima in temporally adjacent analysis frames are usually located
at comparable lags, since F0 is a slowly-varying function of time.

4. The “true” F0 occasionally changes abruptly by doubling or halving.
5. Voicing tends to change states with low frequency. '

6. The largest non-zero-lag maximum in ¢ for unvoiced speech is usually
considerably less than 1.0.



7. The short-time spectra of voiced and unvoiced speech frames are usually
quite different.

Historically, these characteristics and analogous ones pertaining to other
transformations of the speech, such as the autocorrelation and AMDF, have
guided the design of many FO estimation algorithms (see [2] for a thorough
review), but combining the often conflicting evidence to determine the voicing
state (voiced or unvoiced) and, if voiced, the F0, has been an ongoing problem.
In the final analysis, the problem is not completely soluble, since the assump-
tions of a two-state voicing model and a single F0 are both oversimplifications.
On the other hand, the partial solutions achieved so far have led to practical
developments in speech technology and provide measurements useful to those
studying the basic properties of human speech and the voice.

1.2 Dynamic Programming

Dynamic programming [7] provides a computational framework for integrating
the contextual and local evidence available in the correlogram to arrive at a
globally best estimate of voicing state and F0. Apparently the first reported use
of dynamic programming in a similar context was the DYPTRACK algorithm,
based on the AMDF and dynamic programming [1], but this work was not made
public at the time. This general approach to parameter estimation is clearly
outlined by Ney [4]. The approach to F0 estimation described below is similar
to that first publically described by Secrest and Doddington in 1983 and shown
by them to have excellent performance simultaneously estimating F0 and the
voicing state [5, 6].

Dynamic programming may be applied to the F0 problem as follows:
Let:

I; be the number of states hypothesized at frame 4, which is one plus the
number of non-zero-lag local maxima in ¢ at frame 7. Thus, at each frame, I; — 1
F0’s (voiced states) and one unvoiced state will be hypothesized.

C;; be the value of the j** non-zero-lag local maximum in ¢ at frame i.

L;; be the lag at which C;; was observed.

We may now define an objective function as the local cost for hypothesizing
that frame ¢ is voiced with period tL; as

dij = a(1 = Cij) + BLij, 1 < j < I,
while the cost for the distinguished unvoiced hypothesis at frame 3 is
dil,- =7+« ma,x(C”)
j

where a and (3 are positive constants. This implements observations 1, 2
and 6 by favoring C;; close to 1.0 and shorter lags for voiced frames and C;;
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close to zero for unvoiced frames. The constant v permits adjustment of the
liklihood of a voiced decision.

The inter-frame FO0 transition cost ¢ at frame ¢ when hypotheses j and k at
the current and previous frames are both voiced is defined as

dijk = min{¢, (n + € — In(2.0)]), (v +[§ — In(0.5)[)},

where

L;; . .
§=IDLJ,ZS]<Ii;ISk<Ii_1
1—1k

and 1 and v are positive constants. This implements observations 3 and 4 by
making cost an increasing function of inter-frame frequency change, but allowing
octave jumps at some specifiable cost.

Given observation 7 above, assume we have some scalar stationarity function
Si, 0 < S5; <1, which is a decreasing function of the magnitude of the rate of
change of the speech signal’s spectrum with time, we would expect S; to have
minima at boundaries between voiced and unvoiced speech segments.

A voicing state transition cost to be applied when the voicing states hypoth-
esized for the current and previous frames differ is now defined as

Oirk = 0i51,_, =Y+ AS;, 1<k<ILi_1;1<j<I,

where ¢ and A are positive constants. This implements observations 5 and 7
by imposing a cost for any voicing state transition, but reducing the cost of the
transition when the signal spectrum is changing rapidly.

We may now define the optimal objective function for frame ¢ as

D;; =di; + kIer}in {Dic1k + i}, 1 <5<,
i-1
with the initial conditions
Do;j =0, 1<j5<1Ip; Ip=2.
For each state at each frame we save the “back pointers”
qij = kmi"’

where k.in at each frame are the indices, k, which minimize D,;, so that the
optimal state sequence can be retrieved. Back pointers from each state at frame
1 may be traced backwards until they converge to a common, globally optimal
state at frame ¢ — [, where It is the latency of the decision. In practice, this
decision latency for the FO estimation problem is rarely greater than 100ms.
Thus, it is feasible to implement FO estimators using this algorithm that can

operate continuously, in real time, with modest delay. Finally, the F0 estimate

for the frame is )

tL;;’
where the values of j are those which result in the minimum value for D in the
region of convergence.

FO; =




1.3 Discussion

Reasonable values for the constants in the algorithm may be determined using
hill climbing techniques on a standard speech database where the F0 and voicing
state have been hand marked (or otherwise reliably determined, for instance
using electro glottography). Fortunately, the performance of the algorithm is
weakly sensitive to the exact parameter values once the general operating region
has been found.

This algorithm permits estimation of F0 on a cycle-by-cycle basis, since ¢,
the frame step size and w, the correlation window size can both be set smaller
than the expected fundamental period. This is in contrast to autocorrelation-
based approaches, where the autocorrelation window must be several glottal
periods long.

A variety of inter-frame spectral distance measures can serve as the basis for
the “stationarity” measure S;. Secrest and Doddington suggest the use of LPC
log area ratios [6]. Good results have been obtained with a stationarity measure
defined as:

1.0
(itakura(i — 1,i + 1) — 0.8)(0.05 + | LSl Tmsiz1__ )y’

rms;41+rms; _1+4.001

where ¢ is the index of the current frame; rms; is signal RMS in frame 4; and
itakura(i, j) is the Itakura-Saito distortion measure [3] between frames 7 and j.

The precision of the F0 estimation can be considerably improved by parabolic
interpolation of the CCF. If a parabola is fit to the three points comprising the
peak in the CCF, the peak of the parabola is a good estimate of the “true”
peak of the corresponding continuous CCF. Thus, instead of using the compu-
tationally expensive approach of increasing the rate at which the speech signal
is sampled, one can apply interpolation on the few peaks in the CCF that are
finally identified as F0 period markers.

It is important that DC and other very low frequency noise components be
removed from the signal prior to application of the CCF. Otherwise, these can
generate very high correlation values in unvoiced and “silent” regions of the
signal, incorrectly encouraging a “voiced” decision. A high-pass filter with zero
response at 0 Hz and a half-power corner frequency at 80 Hz has been found to
be quite effective.

The computational load of the dynamic programming (DP) can be reduced
by limiting the number of candidates considered at each frame. The DP load
grows as the square of the number of candidates (states) in each frame. Thus,
instead of considering all local maxima in the CCF as period candidates, only
the highest N need be considered, where N is on the order of 10-20. This
significantly reduces the load in the unvoiced regions where there are many
local maxima, none of which will ultimately contribute to a period estimation!

The computational load of the CCF may be reduced by performing it in two
stages. Note that for a given window duration and frame rate, the cost of com-
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puting ¢ grows as the square of the speech sample rate. Thus, initial estimates
of the CCF peak locations can be made on a sample-rate-reduced version of the
speech signal. The peak locations can then be refined by recomputing the CCF
at the higher sample rates only in the vicinity of the initial peak estimates and
for only the most promising peaks.

1.4 Figure Caption

Figure 1
Waveform (A), correllogram (B) and cross correlation functions (C, D, E)
based on a female voice saying “Are any sub...”. The cross correlation plots C,

D and E, which were computed at .83 sec, .5 sec and .68 sec, respectively show
correlation values as a function of correlation lag with zero lag at the extreme
left in each plot. In C the “true” peak corresponding to FO0 is actually lower in
amplitude than the peak at twice the true period. In D, the true peak is the
highest non-zero lag peak. Note that the non-zero-lag peaks in the correlation
function based on unvoiced speech, seen in E, are all considerably lower than
the zero-lag peak. The correllogram, B, shows the correlation value plotted as
a function of time (horizontal axis) and lag (vertical axis). Correlations close to
one are shown in black; minus one in white. When the time context surrounding
the problematic correlation function in E is taken into account by examining
the correllogram in B, the correct peak choice is obvious.
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Rotation-based measure of voice aperiodicity

Paul H. Milenkovic
Department of Electrical and Computer Engineering
University of Wisconsin-Madison
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Madison, Wisconsin 53706

Abstract

Milenkovic (1987) describes a waveform model for the measurement of the
aperiodicity of a voiced speech waveform. The model contains a periodic com-
ponent, which may vary in amplitude between pitch periods, and a periodicity
error (also called the noise component), which has a constant mean-square
value across pitch periods. Minimizing the mean-square of the periodicity error
provides estimates of 1) pitch period (used to determine jitter), 2) amplitude
variation of the periodic component (used to determine shimmer), and 3) mag-
nitude of the aperiodicity noise (used to determine voice SNR).

This report describes how minimizing the periodicity error is equivalent to
performing a rotation transformation on signal vectors from two adjoining pitch
periods. This transformation is known as SVD in signal processing (Haykin,
1991) and principal components analysis in statistics (Nash, 1979). This con-
nection gives a more numerically stable formula for computing the minimum
mean-square error. It also provides a geometric interpretation of the periodic
and noise components in relation to the signal vectors, proving the existence of
the periodic and noise components in the form required by the model.

1 Introduction

The purpose of this report is to advocate adoption of minimum mean-square er-
ror (MSE) waveform matching as a standard for measuring voice aperiodicity. The
commercially-available CSpeech software package incorporates a minimum MSE al-
gorithm for determining voice jitter, shimmer, and aperiodicity SNR as described
by Milenkovic (1987). Elaboration on the derivation and rationale of this algorithm
is warranted. This report also contains numerical recipes to facilitate incorporating
minimum MSE into other software packages.

1




Minimum MSE is an improvement over determining jitter and shimmer by mea-
suring the time and amplitude displacement of a salient waveform peak (Horii, 1979).
The time displacement of a zero crossing adjoining a salient peak provides a related
way to measure jitter. Besides the difficulty of finding a consistent salient peak from
one pitch period to the next, the salient peak measures are sensitive to additive noise
in the recording process as well as aperiodicity noise intrinsic to the voice waveform.
Performing a minimum MSE waveform match over an entire pulse, however, is a
well-known method from radar and sonar engineering for counteracting this noise
sensitivity. With voiced speech, this match can take place over an entire pitch period
cycle. By employing a sliding pitch period-long analysis frame, it is not necessary to
identify the salient peak.

Minimum MSE is also an improvement over conventional approaches to measuring
aperiodicity SNR. One method is to measure peaks and valleys of lines in a spectro-
gram (Muta, et al, 1988). The other is to estimate a periodic component by averaging
a large number of pitch periods and to measure the noise component as the difference
between the speech waveform and the estimated periodic component (Yumoto, et al.,
1982). The spectrogram measure requires at least four pitch periods, and the time-
domain method requires ten pitch periods. Both methods lump the effects of jitter,
shimmer, and aperiodicity noise apart from jitter and shimmer into a generalized
measure of noise. Performing a minimum MSE waveform match over one pitch pe-
riod cycle can reduce the number of pitch periods to two (one cycle matched with an
adjoining cycle), and it can help separate the effects of jitter and shimmer from the
noise measure.

In employing a minimum MSE waveform match as a unified framework for mea-
suring jitter, shimmer, and aperiodicity SNR, there is some controversy over whether
to adopt the seemingly peculiar procedure found in Milenkovic (1987) or to adopt a
simpler waveform matching procedure. Such a simpler procedure calls s(t) the wave-
form in the current pitch period, s,(t) = s(t —t,) the waveform in the previous pitch
period, and minimizes the error

e(t) = s(t) - Ks,(1) 1)

by adjusting amplitude factor K and pitch period t, (see Qi and Shipp, 1992 for a
related method).

The objection to the simpler procedure is how it works when both s(t) and s,(t)
contain aperiodicity noise. The simpler procedure may work for radar where s,(t)
is the noise-free outbound pulse and s(t) is the noisy pulse. When both s and s,
contain noise, the simpler procedure will result in a complicated relation between the
minimum mean-square value of e and the true magnitude of the noise contained in
both s and s,. In addition, the relationship between K and waveform shimmer is
complicated on account of the bias introduced by the noise.

2
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The more complicated procedure has the advantage that it gives correctly scaled
estimates of shimmer and aperiodicity noise if a particular waveform model holds
true. This report also shows that the seemingly peculiar algorithm of Milenkovic
performs a vector rotation and is therefore identical to the well-known procedure for
singular value decomposition (SVD) (Haykin, 1991). SVD is also known as principal
components analysis, which has extensive theoretical rationale (Nash, 1979). SVD
leads to a geometrical interpretation of signal and noise components, which proves
that the model has an exact least-squares instead of only an approximate least mean-
square solution as originally supposed.

To widen the application of SVD-based waveform matching, this report purpose-
fully leaves open many other details of a voice analysis system. The initial pitch
estimate is such a detail. The waveform matching procedure assumes a rough esti-
mate of the pitch period by other means, and varies t, to refine the estimate. Another
open issue is the question of aligning the analysis frame on pitch epochs. The method
of Milenkovic (1987) employs a sliding analysis frame. In a voice analysis system with
a reliable means of determining the glottal epoch, the methods described in this report
are also applicable to an analysis frame that is aligned on that epoch.

2 Methods

This section of the report 1) describes a waveform periodicity model and reviews the
minimum MSE estimate of the model parameters, 2) shows how this model can be
reexpressed as a rotation transformation applied to a pair of signal vectors and how
the minimum MSE solution can be expressed as the calculation of the optimal rotation
that performs SVD, and 3) summarizes this result in the form a numerically-stable
recipe for calculation.

2.1 Periodicity model

The waveform s(t) is the speech signal and s,(t) = s(t — t,) is the signal from one
pitch period before. The quantity ¢, is the estimated pitch period, and ¢, can be
adjusted for a best waveform match between pitch periods. A model of waveform
periodicity separates s(t) into a periodic component p(t) and a periodicity error (or
noise component) e(t) according to

s(t) = p(t) +e(?), (2)
sp(t) = p(t—1tp) +e(t—tp). (3)
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Furthermore, because the periodic component can vary in amplitude between pitch
periods according to p(t) = Kp(t —t,),
s(t)
sp(t)

Kp(t —t,) + e(t), (4)
pt — 1) + e5(t), (5)

where e,(t) = e(t — t,).

This model is unusual in that the periodic component can have an amplitude
modulation K, but then again amplitude modulation is known to be present in speech.
If the analysis frame is aligned on a particular glottal epoch, a value of K gets
calculated for that alignment. In a sliding analysis frame is used, a new K gets
calculated for each updated position.

The waveform matching procedure requires forming vectors of samples

s = [s({no—n,+1}T),...,s8(neT)], (6)
s, = [sp({no—np +1}T),...,85(noT)], (7)

where T is the interval between waveform samples, ng is the integer index controlling
position of the analysis frame, and n, is the number of samples in a pitch period-long
frame. In a similar manner, vectors e and e, contain samples of the periodicity error
signals e(t) and e,(t). The vectors s and s, have actual numerical values. The vectors
e and e, are only theoretical constructs in the model, but we can estimate their vector
magnitudes from observations of s and s,.

In the formula s — Ks,, the periodic component p (vector of samples of p(t —t,))
simply cancels out, resulting in

e— Ke,=s— Ks,. (8)
Next, assume that e and e, are of equal vector magnitude according to E = ee” =
e,,,e},w and that they are orthogonal according to ee;f = 0; this is a statement of
statistical independence of the noise components in each pitch period. The symbol 7
denotes vector transpose and eel = ||e||? denotes the Cartesian dot product formula
for the vector norm square. That e and e, are orthogonal and equal norm permits
equating
le - Keyll? = (1+ K?)E. (9)

That the periodic-part cancels-out permits equating

le — Kepl* = |ls — Ks,||* (10)
= ssT —2K ss;f + K 2s,,sg‘.
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Combining these expressions,

1
1+ K?

= (ss” — 2KssT + K’s,s]). (11)

We estimate K and ¢, and derive noise estimate E by adjusting K and ¢, to
minimize E. The reason to call this minimum MSE (as opposed to least squares) is
the absence of proof that the vectors p, e, and e, exist for every given signal vectors
s and s,. Assuming e(t) and e,(t) to be independent equal mean-square random
processes, and that minimizing E gives an estimate of the minimum MSE, these
assumptions provide a weaker criterion for existence of the model. This report will
show that the error vectors indeed exist, and that minimizing E gives least-squares
error vectors. Even though we cannot uniquely specifiy the error vectors themselves,
we can determine their least-squares magnitudes.

The estimation procedure requires stepping through values of ¢,, and finding the
optimal K for each t,. In Milenkovic (1987), the procedure is to step through values
of ¢, that are an integer number of sample intervals T', and to employ parabolic

interpolation on the optimal E to find the best ¢, between sample positions. An.

alternative is to generate vector s, for the “between” values of t, by interpolating
samples of s(t). In either case, we determine the optimal K for a given ¢, by evaluating

OE 2

K 11 K7 (K’ss] — K(ss™ — SpS2) — ss2) = 0. (12)
Defining
g = ssT —s,s], (13)
= ssZ', (14)
leads to the quadratic
K? - %K —1=0, (15)

with solution

K=R+VR+1, R=%. (16)

We take the 4+ branch of 4 because that gives a positive value of K, the usual situation
with a voiced speech waveform.

This concludes the review of Milenkovic (1987). Next, this solution is reexpressed
as a rotation transformation.
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2.2 Rotation transformation and SVD
The rotated error vector e, is defined as

-1
e, = \/_T-.i_—'—ﬁ(e - Kep) = —se + ce, (17)

for s = sinf and ¢ = cos 0, where 6 is an angle of rotation, and

1 K
Ttk Vit K

where ¢ + s? = 1, the necessary and sufficient condition for s and c to be the sine
and cosine of an angle. It also follows that

(18)

le-lI” = llell* = lle,||* = E- (19)
Cancelation of the periodic component p permits equating
e, = —sS + cs,. (20)

We then estimate s and ¢ by minimizing ||e,||* subject to the constraint that A4st=
1. This is done by simply expressing s and c in terms of the earlier solution for K.

Computing s and c in this manner is identical to determining a two-element prin-
cipal components analysis. It turns out that expressing s and ¢ in terms of K results
in the mathematical formula stated by Nash (1979) for principal components analysis.
Expanding

., K* (V1+R2+R)? (vV1+ R? + R)?

T 1+K* T 21+R*4+RVI+R) 2V/1+R(VI+R'+R)
VI+R:+R
2V1+R?

and remembering that R = £, it follows from v/1 + R? = 5-/4rZ + ¢Z that

2. K _VIrt@+g vty
1+ K? 2/4r? + ¢? 2v "’

(&

(21)

(22)

where v = \/4rZ + ¢Z.

Taking the positive branch of the square root and setting

v+q
p—b 2
=5, (23)

6
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the condition ¢? + s? = 1 requires

v—q v? — g2 v? — g2
s 2v \J2v(v+q) i\l 4v22te
r2
= + i
r
= o (24)

where we take the branch of the square root having the same sign as r. This insures
the correct result when signal crosscorrelation r < 0, a rare occurence with voiced
speech that we need to account for anyway.

2.3 Numerical recipe

The numerical algorithm for computing s and ¢ is summarized as follows. Compute
r = ss., (25)

q = ssT —s,sl, (26)

v = ([4r24 g2 (27)

The coeflicient r is the crosscorrelation between the two pitch periods while ¢ is the
signal energy difference between pitch periods.
If ¢ > 0, the condition where the signal energy is greater than in the previous

pitch period, compute
v+q T
= ; = —. 28
¢ V 20’ *= e (28)

If ¢ < 0, the condition where the signal energy is less than in the previous pitch
period, compute

v— r
5 e=—, (29)
where SGN(r) = 1 for r > 0 (the usual case), = —1 for r < 0.

The reason for splitting up the solution this way is that it insures computing v+ ¢
when ¢ > 0 (adding two positive numbers) and computing v — ¢ when ¢ < 0 (still
adding two positive numbers). This avoids the numerical instability resulting from
subtracting two (possibly nearly equal) positive numbers.

The formula for E can be reexpressed as

s = SGN(r)

E = s’ss + c%s,s] — 2scss]. (30)

7
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In the special case of equal amplitude pitch periods, ss” = spsz; and ¢ = s = 1//2,
and the expression simplifies to

E =ssT —ssl. (31)

3 Results

Expressing the minimum MSE solution in terms of principal components analysis
leads to a geometric construction. This construction 1) proves the existence of the
periodic and noise components, 2) expresses the periodic and noise components in
terms of the principal components, and 3) leads to a formal definition of SNR (signal-
to-noise ratio) and HNR (harmonics-to-noise ratio).

The principal components are formulated as

[::]=[—22Hssp]' (32)

The subscript r reminds us that the matrix is a unitary rotation matrix. According
to the theory of principal components, when ¢ and s satisfy ¢ + s = 1 and ||e,||* a
minimum, s, and e, are orthogonal principal components. The vectors s, s,, s, and
e, all lie on an ellipse with s,, and e, marking the major and minor axes.

The existence of the periodicity model is proved by geometric construction. We
express the major principle component as

S, = Ppr + e;L’ (33)

where p, and el are mutually orthogonal vectors selected from the subspace of vectors
orthogonal to e, and where ||e}||? = ||e.||*. Breaking the major principle component
down in this way is possible because ||s,||> > ||e,||> by virtue of which component is
major (the bigger one) and minor (the smaller one). The magnitudes of p, and e,
are uniquely determined (note that ||p,||? = ||s.||> = ||e||* = ||s||* —||e-||* on account
of orthogonality and equality of norms), but the vectors p, and e; are not unique.
That is OK, because we are only interested in the magnitudes for SNR calculations
and do not need to recover the actual vectors.
The original vectors are recovered from the principal components according to

5] = L] )fmes]
o | kA R e | b P

+
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When the rotation matrix is applied to orthogonal vectors of equal magnitude, the
rotation ellipse becomes a circle, and the rotated vectors remain orthogonal with the
same magnitude. This allows us to express periodicity error and periodic components
of the waveform in terms of principal components. The periodicity error vectors e
and e, are orthogonal, equal-magnitude, and rotated versions of minor principal com-
ponent e, and geometrically constructed vector e;-. The major principal component
s, is the sum of the two constructed vectors p, and e}, and the periodic components
are given by p = sp, and Kp = cp, for K = c/s.

This geometric construction is taking two principle components and generating
three vectors: the periodic component (its version scaled by K counts as the same
vector) and two independent periodicity error components. As a result of this two-
to-three mapping, the construction is not unique, but it exists, the minimum norm
of the minor principal component makes the periodicity error components minimum
norm, the three vector elements of the periodicity model exist, and the norms (vector
magnitudes) are unique.

The proposed definition of periodicity SNR is the average of the energy in the
signal for each pitch period divided by the energy in the periodicity error:

lIsl|? + llspll®
lle-|I?
(< + s?)lp” + 2le-|I”

1
SNR = o
1
2 lle-|?
1
2

P 1* + 2lle|I*
[le-]|>

1
T2
lIs1I? + lle|I*

[le-[|?

_ 1(“57'”2 +1) (35)

2 \Jle-|?

The proposed definition of periodicity harmonics-to-noise ratio (HNR) is the av-
erage of the energy in the periodic component for each pitch period divided by the
energy in the periodicity error:

3(62 + 52)”pr“2 _ l”pr“2

HNR = =
2 ”er”2 2 ”er“2
1ls-lI* = lle-|I”
2 led?

()
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4 Conclusions

The waveform matching method of Milenkovic is identical to performing principal
components analysis on a pair of signal vectors taken from two adjoining pitch periods.
This interpretation provides 1) a numerically stable formula for computation, 2) an
interpretation of a voice periodicity model in terms of the principal components, 3)
a proof that the method is least squares, 4) a proposed definition for SNR and HNR
derived from analysis of two adjoining pitch periods. The proposed definitions and
numerical algorithms are applicable to either a sliding analysis frame or an analysis
frame aligned with glottal epoch markers.
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SUGGESTION FOR A PITCH EXTRACTION METHOD AND FILE FORMAT
FOR PATHOLOGICAL VOICE DATA

Dimitar D. Deliyski

Kay Eleme;r—ics Corp., Dept. of Research and Development
12 Maple Av., Pine Brook NJ 07058, U.S.A.

ABSTRACT

An acoustic model of pathological voice production is presented. It describes the non-linear
effects occurring in the acoustic waveform of disordered voices. The noise components such as
fundamental frequency and amplitude irregularities and variations, sub-harmonic components,
turbulent noise and voice breaks are formally expressed as a result of random time function
influences on the excitation function and the glottal filter.

A method for quantitative evaluation of these random functions is described. The method
computes some their statistical characteristics which can be useful in assessing voice in clinical
practice. More than 33 acoustic parameters are computed, such as: average fundamental
frequency, phonatory frequency range, several frequency and amplitude short- and long-term
perturbation and variation measures, noise-to-harmonic ratio, voice turbulence and soft phonation
indexes, quantitative measures of voice breaks, sub-harmonic components and vocal tremors. This
set of parameters, which corresponds to the model, allows a multi-dimensional voice quality
assessment. A computer system based on above model and method was developed for the CSL
model 4300 (Kay Elemetrics Corp.). A group of 68 people with normal and disordered voices
was analyzed using the system in order to define normative values for the acoustic voice
parameters.

The file format for voice data used by Kay Elemetrics Corp. is described. This format, which is
very similar to a multi-media format supported by Microsoft, allows to keep all the information
and associated data in a single file.

LINTRODUCTION

The classic way to describe the acoustics of human speech is by using the Linear Model of Speech
Production [1, 2], where the voice signal is presented as a result of a periodic impulse sequence
(excitation) filtered by the glottis, the vocal tract and the lips.

However, the real voice contains irregular components which are (probably) due to the chaotic
nature of the laryngeal mechanism [3]. A voice without irregularity is not perceived as human
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which is why the advanced speech synthesizers, based on the linear model, introduce some pitch
irregularity [4, 14].

2.ACOUSTIC MODEL OF THE PATHOLOGICAL VOICE PRODUCTION

Voice pathology can cause increased noise components in the voice signal such as: fundamental
frequency and amplitude irregularities and variations with different patterns, sub-harmonic
frequency components, turbulent noise, voice breaks and tremors [2,.5-8). Understanding the
acoustics of these changes is the key to the development of methods for the evaluation of
pathologic voices. A formal expression of these changes is given by the Extended Acoustic Model
of the Pathological Voice Production [9) on Fig.1.

@] (A wglmmm_ ear
=
i B one)——eton | s
Lo 7 ﬁ R 774 7((:)) voice
excitation glottis (vocal folds) vocal tract

Fig.1:Extended Information Model of the Pathological Voice Production.

The discrete-time formal representation of the model describes the excitation function
e(n)=a(n)y’ 4n ~|mTo + ¢(n)_|]
=0

as a modulated impulse sequence, where the frequency modulating (FM) function ¢(n) and the
amplitude modulating (AM) function a(n) are random time functions; 7=0, /... 90 is discrete time
(samples); 7o is the period of the sequence (samples); &n) is a Kronecker delta function
(&(n=0)=1, &n0)=0), and the carrier sequence is

e(n):i&(n—m]’o).
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The glottal volume velocity function

l:(n)+w(n),if a(n) 2 Ac and @(n) < ¥e
u'(n)=

(n),in remaining cases

is a result of filtering of the excitation e’(n) by the glottal filter, where

u(n)=e'(n)*g(n) = f: e'(m)g(n-m),

g(n) = Go(n+1)e™";c=200x/sec.;

The White Noise Generator (WNG) adds components w() which model the turbulent
components and the Voice Break Switch (VBS) describes the interruptions of the voice
generation, where: g(n) is the impulse response of the glottal filter, Go- scale factor, T- sampling
period (sec.), Ac and ¥c- amplitude and frequency break thresholds, c1 and c2- comparators. The
convolution of u'(n), the impulse response of the vocal tract filter v(n) and the impulse response of
the lip-radiation filter /(n) results into the modeled voice signal

x(n) = u'(n)*v(n)sl(n)

where v(n) and /(n) are considered invariable because it is assumed that the laryngeal pathology
does not affect the vocal tract and the lips.

All a(n), ¢(n) and w(n) are random time functions. Therefore the task of acoustic evaluation of
pathological voices can be regarded as the extraction of specific statistical parameters of these
functions which have clinical significance. The method described below includes three separate
parts: pitch extraction (demodulation), noise evaluation and long-term components (tremor)
analysis.

3.PITCH EXTRACTION

The amplitude and frequency demodulation curves of the voice signal contain information about
the time-domain behavior of a(n) and @fn). The period-to-period pitch extraction [10] is the
classic type of demodulation used for evaluation of voice pathology [7, 8]. However the
irregularity of the disordered voice makes the pitch extraction inaccurate, often impossible.

In order to provide reliable data an adaptive time-domain pitch-synchronous method for pitch
extraction was developed. It consists of the following main steps: fundamental frequency (Fo)
estimation, Fo verification, period-to-period Fo-extraction and computation of time-domain voice
parameters.

The Fo-estimation provides preliminary information about the pitch. It is based on short-term
autocorrelation analysis with non-linear sgn-coding [11] of the voice signal x(n)
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N-¢1

R(7)= ) x'(n)x'(n+1), 0S tSN/2,
n=0

where: x'(i)=0 if Pmin<x(i)<Pmax;
x'(i)=1 if x(i)2 Pmax;
x'(i)=-1 if x(i)< Pmin

and Pmax=KpAmax;
Pmin=KpAmin;

Amax and Amin - global extremes of the current window in the voice signal x(n). The length of
the autocorrelation window is 30ms or 10ms depending on the Fo-extraction range (67-625Hz or
200-1000Hz). The sampling rate is SOkHz and every window is low-pass filtered at 1800Hz
before coding. The value of the coding threshold at this stage of the analysis is Kp=0.78 in order
to eliminate the incorrect classification of Fo-harmonic components as Fo [12). The current
window is considered to be voiced with period To-tmax if the global maximum is
Rmax(tmax)>KdR(x=0), where the voiced/ unvoiced threshold value id Kd=0.27 [12).

The Fo-verification procedure is similar to the Fo-estimation. The autocorrelation function is
computed again for the same windows at Kp=0.45 in order to suppress the influence of
components sub-harmonic to Fo. The results are compared to the previous step and the decision
about the correct To is made for all windows where difference is discovered.

A period-to-period Fo-extraction is made on the original signal x(n) using a peak-to-peak
extraction measurement. It is synchronous with the verified pitch and voiced/unvoiced results
computed in the previous steps. A linear S-point interpolation is applied on the final period-to-
period Fo-data in order to increase the resolution. This increased resolution is necessary for
meaningful frequency perturbation measurements. The peak-to-peak amplitude is also extracted
for every period.

The following time-domain voice parameters are computed from the extracted pitch data:

Fundamental frequency information measurements: Average Fundamental Frequency Fo
/Hz/ [2), Average Pitch Period To /ms/, Highest Fundamental Frequency Fhi /Hz/, Lowest
Fundamental Frequency Flo /Hz/, Standard Deviation of the Fundamental Frequency STD /Hz/
[S), Phonatory Fundamental Frequency Range PFR /semi-tones/, Length of Analyzed Data
Sample Tsam /sec/ and Number of Pitch Periods PER.

Short and long-term frequency perturbation functions: Absolute Jitter Jita lus/ [13], Jitter
Percent Jitt %/ [13), Relative Average Perturbation RAP P4/ [7), Pitch Period Perturbation
Quotient PPQ /*%/ [8), Smoothed Pitch Period Perturbation Quotient sPPQ %/ and
Fundamental Frequency Coefficient Variation vFo %4/ [5).
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Short and long-term amplitude perturbation functions: Shimmer in dB ShdB /dB/ [13],
Shimmer Percent Shim /%l [13), Amplitude Perturbation Quotient APQ %/ [8), Smoothed
Amplitude Perturbation Quotient SAPQ /*%/ and Peak-to-Peak Amplitude Coefficient of
Variation vAm 4l [5].

Voice break related measurements: Degree of Voice Breaks DVB /*4/ [15] - the ratio of the
total length of areas representing voice breaks to the time of the complete voiced sample; and
Number of Voice Breaks NVB. The criteria for voice break area can be a missing impulse for the
current period or an extreme irregularity of the pitch period.

Sub-harmonic components related measurements: Degree of sub-harmonics DSH /%%/- the
ratio of the number of autocorrelation windows with incorrect sub-harmonic period classification
to the total number of autocorrelation windows; and Number of Sub-Harmonic Segments NSH

Voice irregularity related measurements: Degree of Irregular Vocalization DUV P4/ [15}- the
ratio of the number of autocorrelation windows classified as unvoiced to the total number of
autocorrelation windows; and Number of Unvoiced Segments NUV.

4.NOISE EVALUATION

The analysis of the voice signal in the frequency domain provides another approach to the
evaluation of its irregularity (noise). The amount of in-harmonic spectral components correlates to
the perception of hoarseness of the pathological voice [16). To evaluate the level of noise
components and separate the turbulent noise correlating to the intensity of the function w(n), a
pitch-synchronous frequency-domain method was developed. The following parameters are
extracted: Noise to Harmonic Ratio NHR- a general evaluation of the noise presence in the
analyzed signal (including amplitude and frequency variations, turbulence noise, sub-harmonic
components and/or voice breaks), Voice Turbulence Index VTI- mostly correlating with the
turbulence components caused by incomplete or loose adduction of the vocal folds; and Soft
Phonation Index SPI- an evaluation of the poorness of high-frequency harmonic components that
may be an indication of loosely adducted vocal folds during phonation.

The algorithm consists of the following general procedures:

1. Election of two groups of windows of 81.92 ms (4096 points) of the voice signal. The first
group includes a sequence of windows of the voiced areas in the analyzed signal with a half
window overlap. The second group includes four non-contiguous windows, where the
frequency and amplitude perturbations are the lowest for the signal.

2. For every window in both groups the following steps apply: low-pass filtering (cutoff 6000Hz,
order 22, Hamming window), downsampling to 12.5kHz and conversion of the real signal into
analytical one using Hilbert filtering; computation of the power spectrum of the window using a
1024-points Complex Fast Fourier Transform (FFT) on the analytical signal; calculation of the
average fundamental frequency within the current window from the time-domain analysis data
and synchronous harmonic/in-harmonic separation; computation of the current window’s NHR,
SPI and VTI. NHR is a ratio of the in-harmonic energy in the range 1500-4500Hz to the
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harmonic spectral energy (70-4500 Hz) and SP/ is a ratio of the lower-frequency (70-1600Hz)
to the higher-frequency (1600-4500Hz) harmonic energy for the first group of windows. V77 is

a ratio of the spectral in-harmonic high-frequency energy (2800-5800Hz) to the spectral
harmonic energy (70-4500Hz) for the second group of windows.

3. Computation of the average values of NHR, SPI and VTI.

S.TREMOR ANALYSIS

The pitch extraction process yields the amplitude and frequency demodulation curves of the voice
signal. These curves contain information about the long-term amplitude and frequency variability
(tremor) of the voice signal [17). Methods for frequency and amplitude tremor analysis are
developed. The algorithm for frequency tremor analysis includes the following steps:

1. Division of the Fo-data resulting from pitch extraction into windows of 2 sec. length with 1
sec. step overlap.

2. Application of the following procedures to every window: low-pass filtering of the Fo- data
(cutoff 30Hz) and downsampling to 400Hz; calculation of the total energy of the resulting
signals; subtraction of the DC-component and computation of the autocorrelation function on
the residual signal; division of the autocorrelation data by the total energy and accumulation of
the results from every window. The maxima of the resulting autocorrelation curve show the
intensity and frequency of the long-term (up to 30Hz) frequency-modulating components.

3. Calculation of the Fo-Tremor Intensity Index FTRI /%/- the value of the global maximum of
the average autocorrelation curve and the corresponding position Fo-Tremor Frequency Ffir
/Hz/

The same method applies for computation of the Amplitude Tremor Intensity Index ATRI /%/ and
the Amplitude-Tremor Frequency Fatr /Hz/ from the peak-to-peak amplitude data resulting from
pitch extraction.

6.APPLICATION

Based on the model and the methods described above a Multi-Dimensional Voice Program
MDVP was developed utilizing the Computerized Speech Lab (CSL) model 4300 (Kay Elemetrics
Corp.). CSL, a hardware/software system which uses an MS-DOS based computer as host,
includes signal conditioning, 16-bit A/D converters, dual digital signal processors (DSP16A &
TMS32025) and support peripherals. The MDVP system computes a set of 33 acoustic voice
parameters in about 16 seconds and provides flexible routines for graphical representation of the
results[Fig.2-3]. Also a user-upgradable voice database allows automatic comparison of the
current results with different nosological groups.
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Fig.2: MDVP-Display of the voice waveform (view A), period-to-period fundamental frequency (B),
peak-to-peak amplitude (C), Fo-tremor (D) and amplitude tremor (E) autocorrelation curves, long-
term average linear spectrum of the voiced areas of the signal (F) and histogram of the
distribution of Fo (G).
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Fig.3: Multi-Dimensional Diagram display of the acoustic parameters. The area within the circle
shows the normative threshold range and the polygon - the currently computed values.
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In order to extract the normative threshold values of the acoustic parameters sustained phonation
of the vowel ‘a’' of 15 persons (7m,8f) with normal voice production and of 53 patients (25m,28f)
with laryngeal diseases were analyzed using the MDVP system. The following nosological groups
were included in the study: laryngeal cancer, benign neoplasms, chronic laryngitis, functional
dysphonia and paralysis of a recurrent nerve. The computed normative threshold values for this
database are:

Frequency perturbation measurements:

Jita Jitt RAP PPQ :PPQ(SSp) vFo
83.2 us 1.04 % 0.68 % 0.84 % 1.02 % 1.10%
Amplitude perturbation measurements:
ShdB Shim APQ sAPQQSp) vAm
0.35dB 3.81% 3.07% 423 % 820 %
Voice break, sub-harmonic and voice irregularity measurements:
DVB DSH DUV NVB NSH NUV
0% 0% 0% 0 0 0
Noise and tremor evaluation measurements:
NHR VTI SPI FTRI ATRI
0.19 0.061 14.12 0.95 % 437 %

The normative values may vary depending on the nosological groups included in the specific
study. A separate database is recommended to be selected or created for different applications.

7.FILE FORMAT

The format of sampled data files used by Kay Elemetrics Corp. was developed to meet the
requirement for a single file that would contain any information that may be associated with a
piece of sampled data and could be expanded to include additional features as those were
incorporated into the program without rendering previous data files obsolete. A single file is
advantageous because it keeps all information about a recording in one file. Separate files to
describe a recording can be confusing and inadvertently separated. This file format is very flexible
and is designed to be changeable to accommodate future requirements. Under exploration, for
example, is the inclusion of videostroboscopic images with the file so that acoustic and images of
the vocal cords can be viewed in synchronization with spectrograms and waveform displays. This
new capability, unforeseen when the CSL was first developed, can be accommodated with the
CSL file format without rendering previous data files obsolete.

Additionally, it was necessary that the format could be readily identified by any program
attempting to read the file to determine that the file was, in fact, an appropriate sampled data file.
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Toward these ends, a format made up of a number of nested named data BLOCKS was
developed. The specification may be expanded by defining additional BLOCK types to
accommodate new features and identifiability is provided since the name and placement of each
BLOCK is specified for the file format and may be quickly checked as the file is read. This means,
among other things, that it is not necessary to specify a particular filename extension in order to
identify the file type to a program so that the extension may be put to better use as a classification
aid for the user if desired.

A sampled data file which conforms to this specification contains the string "FORM" as the first 4
characters in the file (the FILE TITLE), followed by a BLOCK containing all data for the file.
The BLOCK following the FILE TITLE may (and most certainly will) contain one or more nested
BLOCKS. An example of Kay Elemetrics data file structure is shown of Fig.4.

File Contents Description Byte Offset
FIOI RIM < File Tite o
< Main Block Title 4
DIS| 116 ) main
main length 8
Ee——— 1
HIEI DIR < Header Block Title 2
< block
header length (aways 32) 1
Creation Date
Sampling Rate
Signal Length
Level | Level
—————— € ——
< comment block title 48
NIOITIE oo :
(optional)
r———— <-—————| .
SI DI Al_ < data block title . 52 + note length
—_——— < datablock .
date length (Ghﬁﬂ;\dl\) 56 + note length
| | < |
. . . etc. ) etc.
| ——— | =

Fig.4: Kay Elemetrics Data File Structure Example.
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Currently Kay's NSP data file format used in CSL can accommodate the following information:
creation date, time and title, sampling rate, signal length, signal levels for each channel, sampled
data from up to four channels, [PA phonetic transcription, named tags and voiced impulse
markers for each channel, palatometric data and a comment field. Under concideraration is the
inclusion of synchronous videostroboscopic images, signals associated with swallowing, patient's
case history data, clinical evaluation and acoustic analysis results. Also the format is intended to
accommodate several channels of data with different sampling rates.

The NSP format is very similar and easily convertible to RIF format, which is supported by
Microsoft as a multi-media format. The products from the CSL-family support also input and
output to several other file formats as TIMIT, ILS, DAT-tape, binary without header and flexible
generic binary formats with header set by the user.
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Abstract

Current methods of computing amplitude perturbation of voice depend upon being
able to accurately determine fundamental period. In this paper, we describe two
methods of estimating amplitude perturbation of voice which do not depend on being
able to accurately determine the boundaries of fundamental periods. In both of these
methods, amplitude perturbation is computed as the variance of an ensemble of pe-
riods after these periods have been aligned in time. In one method, time alignment
is accomplished using zero-phase transformation. In the second method, an uncon-
strained dynamic programming procedure is used. Accuracy of estimating amplitude
perturbation by these two methods is evaluated with synthetic and natural voice sig-
nals and is also compared with estimation using zcro-padding based time alignment.
The unconstrained dynamic programming mecthod is shown to provide accurate esti-
mation of voice amplitude perturbation over a variety of signal conditions.

Qi-1



I. Introduction

Laryngeal diseases and disorders may cause disturbances in the voice signal. One
significant disturbance is the presence of noise (Horii, 1980; Yumoto et al., 1982;
Hillenbrand, 1987). The level of noise present in human voice often is difficult to
quantify, in part, because the voice signal is complex and quasi-periodic (Kasuya et al.,
1986; Muta ct al., 1988; Qi, 1992). Because of the complex, quasi-periodic nature
of human voice, many well-defined concepts in signal processing may not be dircctly
applicable to the analysis of human voice signals. For cxample, the fundamental
frequency of a periodic signal, f(t) = f(t + nT), n € I, is defined as +- In theory,
this definition cannot be applied to human vojce signals because these signals are not
truly periodic. Similar problems exist for the amplitude of voice signals as well. For
example, it is known that the amplitude of a sinusoid refers to the maximum positive
or negative excursion of the sinusoid from zero. The amplitude of a complex, periodic
signal often refers to the amplitude of cach sinusoidal component of the complex
signal (Oppenheim and Schafer, 1989). The amplitude of a complex, quasi-periodic
voice signal is not well identified. In this paper, we used the term fundamental
period to refer to the duration between acoustic events that correspond to one cycle
of vocal fold or voice source vibration. Fundamental frequency (f0) is the inverse of
the fundamental period. The term amplitude is used to refer to the value of the voice
signal at any instant in time. Amplitude perturbation refers to the total random
variation in amplitude within one fundamental period.

The level of amplitude perturbation can be computed relatively easily as the
ensemble variance of several periods, when all periods have the same length (Papoulis,
198+4). The periods of human voices do not have the same length. Time-normalization
of periods is necessary to compute the ensemble variance of voice signals. One method

of timé normalization is zero-padding in which zeroes are added to every short period.

1
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Zcro-padding can be used when the level of f0 perturbation is rclatively small (Yumoto
et al., 1982). When the perturbation in fundamental frequency is relatively large, for
cxample, in pathological voices, the zcro-padding normalization method should be
used because the computed variance in amplitude will be significantly inflated by (0
perturbation. By way of example, two periods of a voice signal are shown in Figure la
and their difference is shown in Figure 1b. As can be scen, the amplitude differences
between these two periods are primarily due to the difference in temporal structure
of the signals. If one period is compressed or stretched, the amplitude perturbation
or difference between the two periods is negligible (see Figures 1c and 1d).

One of us has recently suggested that voice amplitude perturbation should be esti-
mated as the ensecmble variance in amplitude after all periods are optimally aligned in
time (Qi, 1992). In this carlicr work, optimal time-alignment of fundamental periods
was accomplished using an end-point-constrained, dynamic programming procedure,
in which the end-points of each period were aligned first, i.c., prior to optimal time
alignment of every point within a period. This method of cstimating amplitude
perturbation was shown to be highly accurate even when rclatively large [0 pertur-
bations were added to voice signals. An assumption underlying this method of time-
normalization is that the boundarics of cach fundamental period can be determined
accurately.

More recently, we have been conducting research to define acoustic properties of
voices characterized by the presence of larger than normal levels of perturbations. To
accomplish this work, we sought to develop methods of estimating amplitude pertur-
bation which do not depend upon being able to accurately determine the boundaries
of fundamental periods. Two such methods are described and evaluated in this paper.
In both of these methods amplitude perturbation is computed as the variance of an
ensemble of periods following time-normalization of these periods. In one method,

time-normalization is accomplished using zero-phase transformation. In the second
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method, an unconstrained dynamic programming procedure is used to time-normalize

signals (Rabiner et al., 1978).

II. Methods of Time Normalization

Time-normalization is used in the computation of amplitude perturbation to min-
imize error due to temporal mis-alignment of individual periods. Two major sources
of temporal mis-alignment are the time-aliasing cffect among periods and errors in
period boundary determination (PBD). Time-aliasing refers to the influence, due to
the infinite impulse response of the vocal-tract, of previous periods on the period un-
der analysis (Oppenheim and Schafer, 1989 Verhelst, 1991). When all periods have
the same length, the influence of previous periods is constant and would not alter
the temporal structure of each period. When f0 perturbation exists, the influcnce
of previous periods varies on a period-by-period basis, resulting in the imposition of
variations in the temporal structure on cach period. Errors in PBD also produce

alterations in the temporal structure of each period.

A. Zero-Phase Transformation

One approach to minimizing the effects of time mis-alignment on the estimation
of amplitude perturbation is to remove all phase-rclated information for cach funda-
mental period. This can be accomplished using zero-phase transformation. A four

step computational approach is used to accomplish zcro-phase transformation:
e Identify approximately period boundarics of a voice segment.

o Compute period-synchronized, zcro-padded Fast Fourier Transformation (FFT )

for each period.
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o Compute the magnitude spectrum and set the phase of cach frequency compo-

nent to zcro.
e Inversely transform the zero-phased magnitude spectrum.

Because phase-related information is removed in zcro-phase transformation, all
frequency components of cach fundamental period arc aligned in time prior to the
computation of amplitude perturbation. Sample synthetic signals before and after
zero-phase transformation are shown in Figure 2 to illustrate that time-misalignment
between signals can be removed by this proccss.

Upon first considcration, it might appear that zcro-phase transformation is cs-
sentially a frequency-domain approach to the estimation of amplitude perturbation.
This initial view suggests that the inverse transformation may not be necessary, i.e.,
the magnitude spectrum could be used directly to estimate amplitude perturbation.
However, the durations of individual periods are not equal in human voice and the
harmonic frequencies of the discrete magnitude spectrum would be expected to vary
from period-to-period. This variation makes it difficult to use the magnitude spectrum
directly for the estimation of amplitude perturbation. The inverse Fourier transform
brings each period back in the time domain with the same length and the resulting
computation of ensemble variance of the inversely transformed signals is simple and
straightforward.

A potential drawback of the zero-phase transformation method is the numerical
implementation of the Fourier transform. The FFT algorithm always assumes that the
signal segment under analysis is periodic (Oppenhcim and Schafer, 1989). With this
assumption, random errors in PBD will not simply be shifts in the time origin. Rather,
crrors in PBD will produce changes in the cyclic pattern of the signal and degrade a
period-synchronized FFT into a period-asynchronized FFT. It is well recognized that

period-synchronized FFT provides more accurate spectral estimation of voice signals
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than does period-asynchronized FFT (Kay, 1987).

B. Unconstrained Dynamic Programming

A second approach to minimizing the effect of time mis-alignment of periods on the
estimation of amplitude perturbation is dynamic programming (DP) procedures. Dy-
namic programming optimally minimizes the differences between signals that are due
to temporal mis-alignment (Nembhauser, 1966). Optimal implies that there will not
be another temporal alignment that can produce a smaller difference between signals
under a given set of conditions. The conditions of DP are often stated heuristically
to facilitate the optimization process. For example, in a constrained DP approach,
the end-points of signals cannot be shifted in time. In an unconstrained DP approach
any points can be shifted in time to achieve optimal match between signals (Parsons,
1987). We fclt the unconstrained DP approach should offer advantages for evaluating
amplitude perturbation in voices, particularly when period boundaries are difficult to
determine.

The algorithm for unconstrained DP (Brown and Rabiner, 1982) is similar to that
for constrained DP (Qi, 1992), except for the processing of starting and ending points
of each period. The process of time-normalization can be viewed as the search for
an optimal matching path through the lattice of points (sece Figure 3). The specific

algorithm used in this work is bricfly summarized below:

1. At the ith step in the horizontal direction, the lower limit and the upper
limit for searching in the vertical direction were given by max(1, %’5—' —6) and

min(N, '—’3'- + 6), respectively. These scarching boundarics dcfined a polygon,

shown in Figure 3.

2. Within these searching limits, the path for connccting each point (i,7) to pre-

vious points in the lattice was determined by minimizing the total cost (rms

S
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differences) for reaching the current position. Specifically,

(a) Starting with all points on the scarching border (i = 1Vj and j = 1Vi). Be-
cause there were no predecessors, the squared difference between samples

on these points was computed as the starting cost.

(b) Looping through all (i,5). In cach loop, the costs from the current point
(1,7) to the predecessors (i -1, ), (i, j - 1), and (i—1, j—1) were computed.
The connection between point (i, ;) and one of its predecessors was made
such that the cost for making the conncction plus the cost for rcaching the
particular predecessor was minimized. This minimum cost was stored as

the cost for reaching point (i, 5).

(c) Wheni = M,j = N, the scarch was terminated and a complete path could
be retrieved from the point with minimum total cost on the ending border

of the searching limits (i = M, N -§ SJSNandj=N,M-§<i< M)

3. The final amplitude difference between any two periods was cqual to the mini-

mum total cost on the ending border of the scarching limits.

An example search is illustrated in Figure 3.

III. Experimental Procedures

To evaluate the use of time-normalization in the estimation of amplitude pertur-
bation, the signal-to-noise ratios (SNRs) of synthetic and natural voices was com-
puted The SNRs of three time-normalization methods — zcro-padding (ZP), zero-
phase transformation (ZPT), and unconstrained dynamic-programming (UDP) —
were computed. SNR was defined as the ratio between the signal encrgy of the most

representative period within a voice segment and the residue ensemble variance of all
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other periods under analysis following time-normalization. The most representative
period was the mean of the period ensemble when ZP or ZPT was used. The most
representative period for UDP was the period with the minimum total rms distance
to all other periods. The enscmble mean is not available when UDP is used for

time-normalization (Qi, 1992).

A. Synthetic Voice Evaluation

The vowel /a/ was synthesized with a formant synthesizer. The synthesizer was
a 5-pole, autoregressive digital filter whose cocfficients were determined by 5 given
pairs of formant frequencices and bandwidths (Rabiner and Schalfer, 1978). The unper-
turbed excitation source to the synthesizer was an cqually-spaced impulsc train. The
amplitude of the impulse was sct to 1000. Controlled perturbations were superim-
posed on the impulse train and the synthesis was made by convolving the perturbed
excitation source with the impulse response of the autoregressive filter. The sampling
frequency of the synthesizer was 16 kliz. Twenty periods were synthesized for cach
SNR computation.

Amplitude perturbation was introduced by adding a zero-mean, Gaussian random
noise to the impulse train. The level of the noise was controlled by the standard devi-
ation of the Gaussian distribution, given as the percentage of the impulse amplitude.
Fundamental frequency perturbation was introduced by adding a zero-mean, uni-
formly distributed random number to cach period of the impulse train. The level of
Jfo perturbation was controlled by the standard deviation of the random number gen-
crator, given as the percentage of the average period. Error in period dctermination
was introduced by adding another zero-mean, uniformly distributed random number
to the known location of cach impulse after the vowel had been synthesized. The

level of the error was controlled by the maximum of the random number generator,

given in number of samples.
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The effect of amplitude perturbation, f0 perturbation, and PBD error on SNR
was dctermined by systematically varying the perturbation of one paramecter, while
holding the other parameters constant. To determine the effect of amplitude per-
turbation, the average f, (at 120 Hz and 220 liz, respectively) and the degree of
fo perturbation (5%) were held constant. The standard deviation of the Gaussian
random noise was increased {rom 1% to 25% of the impulse amplitude (1000) in incre-
mental steps of 5%. To determine the effect of fundamental frequency perturbation,
the standard deviation of noise was held constant (5%). The standard deviation of
f0 was increased from 1% to 25% of the fundamental period in incremental steps of
5%. To determine the effect of period boundary determination, the standard devia-
tion of {0 perturbation was set to 1%, 5%, and 10% of the fundamental period, and
the standard deviation of the noise gencrator was set to 1%, 5%, and 10% of the
impulse amplitude, respectively. The maximum of the random number gencrator for

producing PBD error was varied from 0 sample to 10 sample in incremental steps of

1 sample.

B. Natural Voice Evaluation

Natural voices were used to further evaluate SNR estimation. The natural voices
were uscd only to determined the cffect of PBD errors on the computed SNRs. The
levels of amplitude and {0 perturbations are not controllable in such samples.

Sixteen, non-smoking, healthy adults (8 men and 8 women) provided voice sam-
ples. Each subject produced a sustained /a/ at a constant, comfortable intensity
level for a duration of more than 1 sccond. The microphone (ASTATIC, CTM-80)
was placed about 10 cm in [ront of the subject’s mouth. A pistonphone (GENRAD,
Minical-1987) was used to record a calibration tone prior to cach recording scssion,
and all recordings were made in a quiet room. The recorded productions were digi-

tized into a computer (SUN, Sparc10/30) at a sampling frequency of 16 kHz and a
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quantization level of 16 bits. The signal was passed through an anti-aliasing filter
with a cut-off frequency of about 7.5 kHz prior to the digitization. A waveform editor
(Speech Acoustic Lab, Ocean) was used to select a stable 20-period, segment for each
subject.

The period boundaries of the selected voice scgments were determined from the
residue signal of lincar predictive (LP) inverse filtering. The order of the LP filter
was 12. The autocorrelation method and the Hamming window were used in the LP
analysis. The window length was 256 points and the window step size was 128 points.
The location of period boundaries was identified using a time-delayed, peak-picking
algorithm. Time-delay was introduced to cnsure that each maximum located was
global within a given time bracket and demarcated boundarics of the fundamental
periods. These period marks were assumed to be the correct period boundaries.

Error in PBD was introduced by adding a zcro-mean, uniformly distributed ran-
dom number to the absolute time locations of detected period boundaries. The level
of PBD error was controlled by the maximum of the random number generator. This
maximum varied from 0 sample to 10 sample, in incremental steps of 1 sample. The
altered locations were used as the period boundaries for SNR computation. The SNRs
were computed in the same manner as described earlier for synthetic voices.

A two-step procedure was used in the statistical analyses of the computed SNRs.
First, a polynomial regression (3rd order) of SNR as a function of PBD error was
made for cach subject. Second, an analysis of variance (ANOVA) was undertaken to
assess the effects of gender and method of SNR estimation on the coefficients of the
regression polynomial. In the ANOVA, the dependent variables was the cocfficients
of the regression polynomial. The independent variables were gender group, method

of SNR estimation, and the interaction between gender group and method of SNR

estimation.
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IV. Results and Discussions

The computed and known SNRs of the synthetic signals are plotted as a func-
tion of noise level in Figu<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>